1 ocaml

CMSC330 Spring 2025 Quiz

Name: UID:
SectionNumber: Proctoring TA:
Problem 1: Basics [Total 4 pts]
True False
In OCaml, the terms values and expressions can be used interchangeably @ @
Using mutable variables can cause side effects @ @
Due to OCaml’s type constraints, you cannot make a list of functions @ @
fold_left’s accumulator cannot be a tuple @ @
Problem 2: OCaml Typing and Evaluating [Total 6 pts]

Give the type for the following functions foo and give what the following function call evaluates to. If there is a type error
in the function, put "TYPE ERROR" for the type, and put "ERROR" for the evaluation. If the function call causes an error for
any reason, put "ERROR" for the evaluation.

N (3 pts]
let foo x y =
match x,y with
X:1i1XS,y::ys ->y :: XS Typeoffoo.
| - > 113
foo [1 [1;2;3] ;; Evaluation:
N (3 pts]
let foo lst = let total, _ =
fold_left
(fun (tot, idx) ele ->
(tot + ele * idx, idx + 1)) Type of foo:
(6, 0)
1st in total;;)
Evaluation:

foo [3;6;9] ;;

Problem 3: Filter [Total 4 pts]

filterisanother common higher order functionthat hastype ('a -> bool) -> 'a list -> ’a list. Itapplies
a function to every item in a list and returns a list of the items that caused the function to return true. using only fold
(Left or right, given below), write a function called my_filter which has the same functionality as filter. f will be the
function that returns true or false, and 1 will be the list. Note: the original order must be maintained.

(* example: my_filter (fun x -> x < 4) [2;3;4;6] = [2;3] *)
let my_filter f 1 =

Problem 4: Coding [Total 6 pts]

Write a function call last_sum which takes ina int list 1list and returns the sum of the last elements in each int
list. If list is empty, it adds nothing to the total.

You can write helper functions, you may use the rec keyword, you do not have to use map/fold (however they are still
given). You may not use any List module functions, except those provided. (cons and @ are fine). You may also not use any

imperative OCaml.
let rec map f L = match 1 with

(* last_sum has type int list list -> int x) [1 -> [1

(x Examples |x::xs -> (f x)::(map f xs)
last_sum [] =0
(3 +6+9 %) let rec fold_left f a 1 = match 1 with
last_sum [[1;2;3];[4;5;6];[7;8;9]1] = 18 [1 -> a
(* 0+ 1+ 3x) |x::xs -> fold_left f (f a x) xs
last_sum [[];[1]1;[2;3]] = 4

*) let rec fold_right f 1 a = match 1 with
. [l ->a

(* Write your code below *) |x::xs -> f x (fold_right f xs a)

let rec last_sum mtx =

