
CMSC330 - Organization of Programming Languages
Spring 2025- Final

CMSC330 Course Staff
University of Maryland

Department of Computer Science

Name:

UID:

I pledge on my honor that I have not given or received any unauthorized assistance on this assignment/examination

Signature:

Ground Rules

• Please write legibly. If we cannot read your answer you will not receive credit.
• You may use anything on the accompanying reference sheet anywhere on this exam
• Please remove the reference sheet from the exam
• You may not leave the room or hand in your exam within the last 10 minutes of the exam
• If anything is unclear, ask a proctor. If you are still confused, write down your assumptions in the margin
• Do no take photos of this exam or share this exam in anyway shape or form
• If you need extra space, the last page is for scratch work. Make a note for the grader to check the scratch page if you

want it graded.
• NOTE: there is a page for scratch work at the end of the exam. You may use this freely, just don’t tear it off.

Question Points
P1. 10
P2. 5
P3. 6
P4. 4
P5. 6
P6. 4
P7. 10
P8. 10
P9. 8
P10. 6
P11. 8
P12. 8
P13. 10
P14. 5
EC 2

Total 100 + 2

1

Problem 1: Concepts [Total 10 pts]

true false

If A <: B and B <: C then A <: C T F

Every CFG can be represented by an NFA T F

In Rust, every variable is immutable by default T F

OCaml is dynamically typed because it uses type inference T F

Regular expressions are necessary to code a parser. T F

Safe Rust will never produce runtime errors. T F

By fixing all logic bugs, you have a secure program. T F

Higher order functions are specific to OCaml. T F

Property based testing cannot be used in conjunction with unit testing. T F

In OCaml, anywhere we use map, we could use fold instead. T F

Problem 2: Regex [Total 5 pts]

Which of the following strings are accepted by the regular expression below?

λ∗δσ | [ωβ]{2}

Select NONE if none of the first five (5) options match.

A δσ B ωβωβ C λλσββ D ωβ E δωλ F NONE

2

Problem 3: Property Based Testing [Total 6 pts]

Consider the following incorrect mapip function for a list of i32s in Rust. It is meant to apply the function to each i32
element in a Vec, modifying the input Vec and not returning anything new.

fn mapip<F: Fn(i32) -> i32>(f: F, v: &mut Vec<i32>) -> Vec<i32> {

let mut r = v.clone();

for mut item in &mut r {

*item = f(*item);

}

r

}

Consider the following property p about the mapip function:

p : A Vec should have different values before and after it is passed into mapip.

Using a correct implementation of mapip, this property p should hold true for all valid inputs?

Yes No

Using our implementation of mapip, this property p should hold true for all valid inputs?

Yes No

Suppose I encode this property in Rust as the following:

#[test]

fn test<F: Fn(i32) -> i32>(f: F, v: Vec<i32>) {

let initial = v.clone();

mapip(f,v);

assert_eq!(v, initial);

}

The above test function is a valid encoding of the property p .

Yes No

Problem 4: CFG Creation [Total 4 pts]

Which Context Free Grammar(s) are equivalent to the regex: c*(ab)+d?

Select all that apply.

B

U− > MDC
D− > abD |ab
M− > cM |ϵ
C− > d |ϵ

A
U− > MUD |abU
M− > cM |ϵ
D− > d |ϵ

D
U− > MUD |abU
M− > c |M |ϵ
D− > d |ϵ

C

U− > MDC
D− > abD |ab
M− > cM |ϵ
C− > dC |ϵ

3

Problem 5: OCaml and Rust Typing [Total 6 pts]

Give the type of the expression. If there is a type error, put ”ERROR”

// Rust

{

let a = if false {

true > false

} else {

false

};

let b = true;

(a, b)

}

(* Ocaml *)

fun x ->

let (a,b) = x in

fun y ->

let a = (a+1, b > true) in

(a::[y])

Problem 6: Ocaml and Rust Evaluation [Total 4 pts]

Evaluate the following expressions. If there is a compilation error, put ”ERROR”

(* Ocaml *)

let rec f x = match x with

[] -> 3

|x::xs -> List.fold_left x (f xs) [1;2;3] in

f [(fun a b -> a + b)]

// Rust

fn f1(x: i32, y: i32) -> i32 {

x + y

}

fn f2(x: i32, y: i32) -> i32 {

x * y

}

...

{

let mut x = vec![-4, -2, 3];

let mut a = true;

for i in x.iter_mut() {

if a {

*i = f1(*i, *i);

a = false;

} else {

*i = f2(*i, *i);

a = true;

}

}

x

}

4

Problem 7: NFA to DFA [Total 10 pts]

makeup 0

1

2

3

4w

ϵ

y

y

w

x ϵ

ϵ

x

Convert the above NFA to the below DFA. You MUST show your work to get any credit. (You will need to remove the Garbage
state)

S0 S1

S2

Scratch Space:

E1

E2

E3

E4E5

E6

S0: S1: S2:

E1: E2: E3:

E4: E5: E6:

(a) Which states are the final (accepting) states? Select all that apply [2 pts]

A State S0 B State S1 C State S2

5

Problem 8: Lexing, Parsing, Interpreting [Total 10 pts]

Given the following CFG, and assuming the Ocaml type system
and semantics, at what stage of language processing would
each expression fail? Mark ‘Valid’ if the expression would be
accepted by the grammar and evaluate successfully. Assume
the only symbols allowed are those found in the grammar.

E → let S = E in E | let ref S = E ; E | R
R → R <> R | S := R | M
M →M ∗ M | M − M | S
S → 1 | 2 | 3 | t r ue | f al se | x | (E)

For all x ∈ S , x is a lowercase English character.

Lexer Parser Evaluator Valid

let 2 - 1 = 1 in 3 L P E V

if true then false else 3 L P E V

let ref a = 1 * 4; a := 5 L P E V

true := 3 L P E V

let x = x <> false in x L P E V

Problem 9: Garbage Collection [Total 6 pts]

Given the following memory diagram:

heap
Stack

x

y

A B C D E F

(a) Select each piece of memory that should be marked as freed after calling Mark and Sweep at the time of this diagram. [3 pts]

Free A A Free B B Free C C Free D D Free E E Free F F None G

(b) Select each piece of memory that should be marked as freed at the time of this diagram using Reference Counting. [3 pts]

Free A A Free B B Free C C Free D D Free E E Free F F None G

6

Problem 10: Lambda Calculus [Total 8 pts]

(a) Reduce [3 pts]
Order the following statements to produce a correct reduction of the following expression. The reduction you choose MUST
use eager evaluation. Write the letter corresponding to each step in the boxes on the right. Note that you may not need to
fill every box.

(λf . d e (f d)) ((λd . f) (λf . (λd . e)))
A. f d

B. d e (λd . (λf . (λd . e)) d)

C. d e ((λd . f) (λf . (λd . e)) d)

D. ((λd . f) (λf . (λd . e))) d

E. d e (f d)

F. d e (λf . (λd . e))

G. (λf . d e (f d)) ((λf . (λd . e)))

H. (λf . d e (f d)) f

I. (d e ((λd . f) d)) (λd . e)

J. (d e ((λd . f) d)) (λf . (λd . e))

(b) Free Variables: [3 pts]
Circle the free variables in the expression below:

(λd . (λe . f) (λf . f) (e e (λf . e)))
(c) Alpha Equivalence: [2 pts]

Which of the following are alpha equivalent to the following expression (from part b): (λd . (λe . f) (λf . f) (e e (λf . e)))?
Select all that apply.

A (λd . (λd . f) (λd . d) (e e (λd . e)))
B (λe . (λf . d) (λd . d) (f f (λd . f)))
C (λd . (λf . f) (λg . g) (e e (λh. e)))
D (λf . (λd . f) (λe . e) (e e (λd . e)))

7

Problem 11: Operational Semantics [Total 8 pts]

Consider the following rules of OCaml:

A; t r ue → t r ue A; f al se → f al se A; n → n

A(x) = v

A; x → v

A; e1 → v1 A, x : v1; e2 → v2

A; let x = e1 in e2 → v2

A; e1 → v1 A; e2 → v2 v3 i s v1 <> v2

A; e1 <> e2 → v3
Using OCaml as the metalanguage, prove the following sentence evaluates.
IMPORTANT: you must fill in the blanks to receive credit.

let x = 1 in x <> 2

2

7

4 5 6

3

A; let x = 1 in x <> 2→ 1

Scratch Space:

Blank 1:

Blank 2:

Blank 3:

Blank 4:

Blank 5:

Blank 6:

Blank 7:

8

Problem 12: Ownership and Lifetimes [Total 8 pts]

1 fn main(){

2 let mut x = String::from("hello");

3 let y = &x;

4 println!("{},{}",x,y);

5 }

Does the code compile? Y Yes F No

If no, explain why not in one sentence:

1 fn main(){

2 let x = String::from("Hello");

3 let mut y = &x;

4 y.push_str(" world");

5 println!("{}",x);

6 }

Does the code compile? Y Yes F No

If no, explain why not in one sentence:

1 fn main(){

2 let mut x = String::from("Hello");

3 let _a = &x;

4 let y = &mut x;

5 y.push_str(" world");

6 println!("{}",x);

7 }

Does the code compile? Y Yes F No

If no, explain why not in one sentence:

1 fn function(s1: String,

2 s2: String,

3 f:bool)->usize{

4 if f {s1.len()} else{s2.len()}

5 }

6 fn main(){

7 let a = String::from("hello");

8 let b = a.clone();

9 let c = function(b,a,true);

10 println!("{} has length {}",a,c);

11 }

Does the code compile? Y Yes F No

If no, explain why not in one sentence:

9

Problem 13: Ocaml Coding [Total 10 pts]

Restrictions: You are not allowed to use imperative OCaml; you can define recursive helper/helper functions below the
function signatures we provided. You are not allowed to use any List module functions except the ones already given to you
on the cheat sheet, otherwise you may use anything in StdLib.

Write a function called largest sum path that, given a tree, returns a list of the path from the root to the node in the
tree that gives the largest sum when each value on the path is added up.

If there are multiple tied sums, you can return any one path.
Return an empty list if the tree is empty.

type ’a tree = External | Internal of ’a * ’a tree list

Example tree t:

1

/ | \

2 5 3

/ \

4 16

/

8

let t = Internal (1,

[Internal (2,

[Internal (4,

[Internal (8, [External])

]);

Internal (6, [External])

]);

Internal (3, [External]);

Internal (5, [External])

])

Expected Output:

largest_sum_path t = [1;2;16]

Write your code on the next page.

10

let rec largest_sum_path t =

11

Problem 14: Rust Coding [Total 5 pts]

Restrictions: You may not use Rust’s built in map or fold for this function.

Recall the higher order function fold in OCaml. We are going to write a version of it in Rust, though we are restricting the
types of the input vec and accumulator to u32s rather than generics for simplicity.

f in the type signature is a function that takes in 2 u32s (one an element of the Vec and one an accumulator) and returns a u32.

Note: You can do fold left or fold right but fold left is probably easier.

Example

fn add (e: u32, mut a : u32) -> u32 {

a + e

}

fn main() {

let mut v = vec![1,2,3];

let mut a = 0;

let x = fold (add, v, a);

println!("{:?}", x); // prints 6

}

Write your code for fold below:
fn fold (f: impl Fn(u32, u32) -> u32, v: Vec<u32>, mut a: u32) -> u32 {

}

12

Problem 15: Extra Credit [Total 2 pts]

For the following, you may only receive up to 2 points regardless of how many answers you give.
(a) Staff Stalking [1 pts]
What is your discussion TA’s name and what is your discussion’s section number?

(b) Staff Stalking [1 pts]
If your Discussion TA were an animal what would they be?

(c) Colon Parenthesis [1 pts]
Write a poem!

13

For Scratch Work - Do not tear off. Indicate the problem with
your work

14

Cheat Sheet
OCaml
(* Map and Fold *)

(* (’a -> ’b) -> ’a list -> ’b list *)

let rec map f l = match l with

[] -> []

|x::xs -> (f x)::(map f xs)

(* (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a *)

let rec fold_left f a l = match l with

[] -> a

|x::xs -> fold_left f (f a x) xs

(* (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b *)

let rec fold_right f l a = match l with

[] -> a

|x::xs -> f x (fold_right f xs a)

(* ’a list -> int *)

List.length: Returns the length

(number of elements) of the given list.

Structure of Regex
R → ∅

| σ
| ϵ
| RR
| R |R
| R ∗

(* Regex in OCaml *)

Re.Posix.re: string -> regex

Re.compile: regex -> compiled_regex

Re.exec: compiled_regex -> string -> group

Re.execp: compiled_regex -> string -> bool

Re.exec_opt: compiled_regex -> string -> group option

Re.matches: compiled_regex -> string -> string list

Re.Group.get: group -> int -> string

Re.Group.get_opt: group -> int -> string option

(* OCaml Function Types *)

:: -: ’a -> ’a list -> ’a list

@ -: ’a list -> ’a list -> ’a list

+, -, *, / -: int -> int -> int

+., -., *., /. -: float -> float -> float

&&, || -: bool -> bool -> bool

not -: bool -> bool

^ -: string -> string -> string

=>,>,=,<,<= :- ’a -> ’a -> bool

Regex
* zero or more repetitions of the preceding character or group
+ one or more repetitions of the preceding character or group
? zero or one repetitions of the preceding character or group
. any character
r1 |r2 r1 or r2 (eg. a|b means ’a’ or ’b’)
[abc] match any character in abc

[ˆr1] anything except r1 (eg. [ˆabc] is anything but an ’a’, ’b’, or ’c’)
[r1-r2] range specification (eg. [a-z] means any letter in the ASCII range of a-z)
{n} exactly n repetitions of the preceding character or group
{n,} at least n repetitions of the preceding character or group
{m,n} at least m and at most n repetitions of the preceding character or group
ˆ start of string
$ end of string
(r1) capture the pattern r1 and store it somewhere (match group in Python)
\d any digit, same as [0-9]
\s any space character like \n, \t, \r, \f, or space

15

NFA to DFA Algorithm (Subset
Construction Algorithm)
NFA (input): (Σ,Q , q0, Fn , δ), DFA (output):
(Σ, R , r0, Fd , δn)

R ← {}
r0 ← ϵ − closure(σ, q0)
while \ an unmarked state r ∈ R do

mark r
for all a ∈ Σ do

E ← move(σ, r , a)
e ← ϵ − closure(σ, E)
if e < R then

R ← R ∪ {e}
end if
σn ← σn ∪ {r , a, e}

end for
end while
Fd ← {r | \s ∈ r with s ∈ Fn }

Rust

// Vectors

let vec = Vec::new(); // makes a new vector

let vec1 = vec![1,2,3]

vec.push(ele); // Pushes the element ’ele’

// to end of the vector ’vec’

// Strings

let string = String::from("Hello");

string.push_str(&str); // appends the str

// to string

vec.to_iter(); // returns an iterator for vec

vec.iter_mut(); // returns an iterator that

// allows modifying each value.

string.chars() // returns an iterator of chars

// over the a string

iter.rev(); // reverses an iterators direction

iter.next(); // returns an Option of the next

// item in the iterator.

struct Building{ // example of struct

name:String,

floors:i32,

locationx:f32,

locationy:f32,

}

enum Option<T>{ Some(T); None } //enum Option type

option.unwrap(); // returns the item in an Option or

// panics if None

16

