CMSC330 - Organization of Programming Languages
Spring 2025- Exam 2Solutions

CMSC330 Course Staff
University of Maryland
Department of Computer Science

Name:

UID:

| pledge on my honor that | have not given or received any unauthorized assistance on this assignment/examination

Signature:

Ground Rules

Please write legibly. If we cannot read your answer you will not receive credit.
You may use anything on the accompanying reference sheet anywhere on this exam

Please remove the reference sheet from the exam

You may not leave the room or hand in your exam within the last 10 minutes of the exam

If anything is unclear, ask a proctor. If you are still confused, write down your assumptions in the margin

Question | Points
P1. 10
P2. 10
P3. 10
Ps. 5
Ps. 20
P6. 5
P7. 5
P8. 15
Po. 20

Total 100

Problem 1: Concepts

A lexer checks an input string for grammatical correctness

{x:{a:Bool, c:Int, b:Int} y:{d:Int} } <: {x:{a:Bool b:Int} }

A type-safe language like OCaml will not compile a meaningless (i.e. ill-defined) program
Operational Semantic and Type Checking proofs aim to prove the same thing

For any regular expression, there can be multiple corresponding DFAs

A type system can be sound but not complete

If B and C are subtypes of A, then B must also be a subtype of C.

All NFAs are DFAs

A string can fail at the lexer, but pass the parser.

An accept function that works on any NFA will also work on any DFA.

{x:{a:Bool, c:Int, bzInt} y:{d:Int}} <: {x:{a:Bool b:Int} }

A lexer checks an input string for grammatical correctness

A type-safe language like OCaml will not compile a meaningless (i.e. ill-defined) program
Operational Semantic and Type Checking proofs aim to prove the same thing

For any regular expression, there can be multiple corresponding DFAs

A type system can be sound but not complete

If B and C are subtypes of A, then B must also be a subtype of C.

All NFAs are DFAs

A string can fail at the lexer, but pass the parser.

An accept function that works on any NFA will also work on any DFA.

{x:{a:Bool, c:Int, b:Int} y:{d:Int}} <: {x:{a:Bool b:Int} }
A lexer checks an input string for grammatical correctness
A type-safe language like OCaml will not compile a meaningless (i.e. ill-defined) program

Operational Semantic and Type Checking proofs aim to prove the same thing

true false

S

0000 000000000 000000

L HON BOBNON N N BONON BON BOBNON N N NONON BORCO

[Total 10 pts]

For any regular expression, there can be multiple corresponding DFAs
A type system can be sound but not complete

If Band C are subtypes of A, then B must also be a subtype of C.

All NFAs are DFAs

A string can fail at the lexer, but pass the parser.

An accept function that works on any NFA will also work on any DFA.

Operational Semantic and Type Checking proofs aim to prove the same thing

A lexer checks an input string for grammatical correctness

A type-safe language like OCaml will not compile a meaningless (i.e. ill-defined) program
{x:{a:Bool, c:Int, b:Int} y:{d:Int}} <: {x:{a:Bool b:Int} }

For any regular expression, there can be multiple corresponding DFAs

A type system can be sound but not complete

If B.and C are subtypes of A, then B must also be a subtype of C.

ALl NFAs are DFAs

A string can fail at the lexer, but pass the parser.

An accept function that works on any NFA will also work on any DFA.

0200000000 0000
ON N N BONBONONON N BEON N N NONC

Problem 2: CFG Derivation [Total 10 pts]

S—> SvS|SrS|T
T-> cT|Td|D
D-> d|fSf

(a) Derive dvddrd using a leftmost derivation (do not draw a tree). If it is not possible, derive £dvdf using a rightmost

derivation [8 pts]

SvS
TvS
DvS
dvs
dvSrS
dvTrS
dvTdrS
dvDdrS
dvddrS
dvddrT
dvddrD
dvddrd

|
VVVVVVVVYVYVYVYV

(b) Is this grammar ambiguous? [2 pts]

.Yes @ No

S— > ShS|SkS|T
T—> pT|mT|D
D- > m|fSf

(c) Derive mhmmkm using a leftmost derivation (do not draw a tree). If it is not possible, derive fmkpmf using a rightmost

derivation [8 pts]
S—-> ShS
-> ThS
—-> DhS
- > mhS
- > mhSkS
- > mhTkS
—> mhTmkS
—-> mhDmkS

- > mhmmkS
—> mhmmkT
- > mhmmkD
—> mhmmkm

(d) Is this grammar ambiguous? [2 pts]

@ (W)no

S—> SxS|SzS|T
T-> wT|yT|D
D- > n|fSf

(e) Derive nxnnzn using a leftmost derivation (do not draw a tree). If it is not possible, derive fnxwnf using a rightmost

derivation [8 pts]

T
D

fSf
fSxSf
FSxTf
FSxwTf
fSxwDf
fSxwnf
fTxwnf
fDxwnf
fnxwnf

|
VVVVVVVVYVYVYV

(f) Is this grammar ambiguous? [2 pts]

.Yes @ No

S—> SbS|S/jS|T
T—-> mT|oD|D
D-> o|fSf

(g) Derive oboojo using a leftmost derivation (do not draw a tree). If it is not possible, derive fojmof using a rightmost

derivation [8 pts]

SbS
TbS
DbS
obS
obSjS
obTjS
oboDjS
oboojS
oboojT
oboojD
oboojo

|
VVVVVVVVYVYVYV

(h) Is this grammar ambiguous? [2 pts]

@ (W)no

Problem 3: Lexing, Parsing, Interpreting [Total 10 pts]

Given the following CFG, and assuming the Ocaml
type system and semantics, at what stage of
language processing would each expression fail?
Mark ‘valid’ if the expression would be accepted
by the grammar and evaluate successfully. As-
sume the only symbols allowed are those found
in the grammar.

E —ifEthen Eelse E|R
R—R+R|R&&R|M
M>M>M|M<M|S
S—1|2|3]|true|false| (E)

if true then false else 7

if 3 then true else true && false
1+2+31

(&&) true false

if 3 > 1 then true else false
1>2<4

if true = false then true else 10
let x =1 in x + 2

(true < 1) > 2

1&& 3 + 1

1+2+31

if 3 then true else true && false
(&&) true false

1>2<4

if true then false else 7

(true < 1) > 2

if 3 > 1 then true else false

1 & 3 + 1

let x =1 in x + 2

if true = false then true else 10

if 3 > 1 then true else false
1>2«<4
let x =1 in x + 2
1 & 3 + 1
if true = false then true else 10
1+2+31
7
if 3 then true else true && false

(&&) true false

Lexer Parser Evaluator Valid

CEGEGHE NGN N NGEN N NCEGHEGH N NCGEGEGENGEGHN N N NOECEGEGN

| HON NONBONONONONBNONONORONONONON NON BEONONONONONON N NONCO

OGN BORON NONONONNGNON NON NONORON NONN N NONONONONONON NGO
CRCRORCNONONCON BEONCONON NONONCORONONOBNONCONONONON NONORCONCO

Problem 4: CFG Creation

Write a CFG of the language that generates all even-length strings over the alphabet a, b.

Letters can be in any order, and the CFG can be ambiguous.
Example strings created by the CFG:

ab

€

abbb

aaaa

S— > aaS | abS | baS | bbS |e

Problem 5: CFG Creation

Write a CFG of the language that generates all even-length strings over the alphabet c, d.

Letters can be in any order, and the CFG can be ambiguous.
Example strings created by the CFG:

cd

€

cddd

ccce

S—>ccS|cdS|dcS|ddS | e

Problem 6: CFG Creation

Write a CFG of the language that generates all even-length strings over the alphabet e, f.
Letters can be in any order, and the CFG can be ambiguous.

Example strings created by the CFG:

ef

€

efff

eeee

S—>eeS|efS|feS|FffS|e

Problem 7: CFG Creation

Write a CFG of the language that generates all even-length strings over the alphabet j, k.
Letters can be in any order, and the CFG can be ambiguous.
Example strings created by the CFG:
jk
€
Jkkk
Jijj

[Total 5 pts]

[Total 5 pts]

[Total 5 pts]

[Total 5 pts]

S—>jjS|jkS|kjS|kkS|e€

Problem 8: NFA to DFA [Total 20 pts]

Convert the above NFA to the below DFA. You MUST show your work to get any credit. (You will need to remove the Garbage
state)

E,
E;3
a E, Scratch Space:
Es
E4\gE6
7

E
(a) Which states are the final (accepting) states? Select all that apply [2 pts]
. State Sy State S . State Sy
(b) What is the result of calling e-closure(1) on this NFA? [4 pts]
1,3,0
(c) What is the result of calling move(o,c) on this NFA? [4 pts]
2,3

10

Convert the above NFA to the below DFA. You MUST show your work to get any credit. (You will need to remove the Garbage

state)

Eq

— E3
E, Scratch Space:
Es
E4\gE6
7

E
(d) Which states are the final (accepting) states? Select all that apply

. State So State S . State Sy

(e) What is the result of calling e-closure(1) on this NFA?

1,3,0

(f) What is the result of calling move(0,z) on this NFA?

2,3

1

[2 pts]

[4 pts]

[4 pts]

Convert the above NFA to the below DFA. You MUST show your work to get any credit. (You will need to remove the Garbage

state)

Eq

— E3
E, Scratch Space:
Es
E4\gE6
7

E
(g) Which states are the final (accepting) states? Select all that apply

. State So State S . State Sy

(h) What is the result of calling e-closure(1) on this NFA?

1,3,0

(i) What is the result of calling move(o,q) on this NFA?

2,3

12

[2 pts]

[4 pts]

[4 pts]

Convert the above NFA to the below DFA. You MUST show your work to get any credit. (You will need to remove the Garbage
state)

Eq

— E3
E, Scratch Space:
Es
E4\gE6
£

(j) Which states are the final (accepting) states? Select all that apply [2 pts]
. State So State S . State Sy
(k) What is the result of calling e-closure(1) on this NFA? [4 pts]
1,3,0
(1) What is the result of calling move(o,f) on this NFA? [4 pts]
2,3

13

Problem 9: CFG Creation Pt. 2

Which Context Free Grammar(s) are equivalent to the regex: [ab]+c*
(2 is a part of the regex)
Select all that apply.

S—-> TD
@ 7> TaTblap @ s > asibs|sclalb
D—> cDle

S—> Ta|Tb|Sc
T—> aTlbTle (D) S—> aS|Sb|Scle

Which Context Free Grammar(s) are equivalent to the regex: [ab]+c*
(? is a part of the regex)

Select all that apply.
S—-> TD

@ 7> TaTblap @ s > asibs|sclalb
D-> cDle
S-> TalTblSc (0) S-> asS|sblScle

T—> aTl|bTle

Which Context Free Grammar(s) are equivalent to the regex: [ab]+c*
(? is a part of the regex)

Select all that apply.
S—-> TD

@ 7> TaTbla @ s > asibS|sclalb
D-> cDle
§-> TalTblSc (0) S-> asS|sblScle

T—> aT|bTle

Which Context Free Grammar(s) are equivalent to the regex: [ab]+c*
(? is a part of the regex)

Select all that apply.
S—-> TD
T-> Ta|Tblalb @ s > asibS|sclalb
D-> cDle
S—> TalTb|Sc (0) S-> asS|sblScle

T—> aT|bT|e

14

[Total 5 pts]

Problem 10: Operational Semantics [Total 5 pts]

Consider the following 2 Languages.

Language One Language Two

A;ABC = true A, ZED = false A;LOL = true A;BRB = false

AYEA=S 1T AXYZ=2 A FKN =1 APMO =2

A(x)=v Ax)=v
Ax=v Ax=v

Aer=v; Ax:vlies,=>wn
A;eocuzx beer = vy

Aer=>vy Ax:vliez,=>wn

A;erm x isej bute; = v
A;e1zv1 A;62$V2 V3 =V <> Vp

A;so eq big e2 huge = v3

A;e1 =V A;62 =V V3=V <>V
Aideferg= v3

Using OCaml as the metalanguage, convert the following Language One sentence to a Language Two sentence, including its

value

erm they is ABC but d they fZED g = true

so they big BRB huge cuz they be LOL

Using OCaml as the metalanguage, convert the following Language One sentence to a Language Two sentence, including its

value

ermtsisXYZbutd YEAfts g = true

so FKN big it huge cuz it be PMO

Using OCaml as the metalanguage, convert the following Language Two sentence to a Language One sentence, including its

value

so they big BRB huge cuz they be LOL = true

erm they is ABC but d they fBRB g

Using OCaml as the metalanguage, convert the following Language Two sentence to a Language One sentence, including its

value

so FKN big ts huge cuz ts be PMO = true

15

ermtsisXYZ butd YEAfts g

16

Problem 11: Typing Proofs
Consider the following typing rules of OCaml:

G(x)=t

G+ true:bool Gt false:bool Grn:int Grx:t

Gre:t; Gx:titey:ty Grer:t; Grey:ty

Gtrletx = ejiney: ty Gre <> ep:bool
Using OCaml as the metalanguage, prove the following sentence type checks.
IMPORTANT: you must fill in the blanks to receive credit.

let x = true in x <> false

2 3

G + let x = true in x <> false :

Scratch Space:

bool
Blank 1:
G+ true: bool
Blank 2:
G, x : bool + x <> false: bool

Blank 3:

G,x :bool + x: bool
Blank 4:

G, x : bool + false : bool

Blank 5:

G, x : bool(x) = bool
Blank 6:

17

[Total 15 pts]

Using OCaml as the metalanguage, prove the following sentence type checks.
IMPORTANT: you must fill in the blanks to receive credit.

letx=1inx<>2

2 3

. 1
Gl—letx=1|nx<>2:

Scratch Space:

bool
Blank 1:
G+ 1:int
Blank 2:
G,x:int+ x <>2:bool

Blank 3:

G,x:intvr x:int
Blank 4:

G,x:int+r2:int
Blank 5:

G,x :int(x) =int
Blank 6:

Using OCaml as the metalanguage, prove the following sentence type checks.
IMPORTANT: you must fill in the blanks to receive credit.

let x = false in x <> true

18

2 3

G + let x =false in x <> true :

Scratch Space:

bool
Blank 1:
G+ false: bool
Blank 2:
G,x:bool v x <> true: bool

Blank 3:

G,x :bool + x: bool
Blank 4:

G, x : bool + true: bool

Blank 5:

G, x : bool(x) = bool
Blank 6:

Using OCaml as the metalanguage, prove the following sentence type checks.
IMPORTANT: you must fill in the blanks to receive credit.

letx=5inx<>7

2 3

GHetx=5inx<>7:

19

Scratch Space:

bool
Blank 1:
Gr5:int
Blank 2:
G,x:int+x <>7:bool

Blank 3:

G,x:int+ x:int
Blank 4:

G,x:int+7:int
Blank 5:

G,x :int(x) =int
Blank 6:

20

Problem 12: Coding [Total 20 pts]

Restrictions: You are not allowed to use imperative OCaml; you can define recursive helper/helper functions below the
function signatures we provided. You are not allowed to use any List module functions except the ones already given to you
on the cheat sheet, otherwise you may use anything in StdLib (string_of_int and the ~ operator are particularly useful, look
at the cheat sheet).

For this question, given a modified subset of smallc as a AST, return a string of the equivalent OCaml Code (Recall your
evaluator from Project 4).

type expr = Int of int | ID of string | Add of expr * expr
| Equal of expr * expr | If of expr * expr * expr
type stmt = Seq of stmt * stmt | Assign of string * expr

Given the AST:

let ast = Seq(Assign("x",Int(4)),
Assign("y",If(Equal(Int(5),Int(6)),
ID("X“ s
Add(Int(6),Int(8)))))

Expected Output:

to_ocaml ast = "let x = 4 in let y = if 5 = 6 then x else 6 + 8"
We do NOT care about spaces in the output, so the following is acceptable:

to_ocaml ast = "letx=4inlety=if5=6thenxelse6+8"
(C Program that generated AST):

int main(){

X = 4;
y = if (5 = 6){
X
Yelsed{
6 + 8
};

}

You may use the following Operational Semantics if needed:

e1 = V1 € =V €1 =V € =V

n=—n X=X e +tery=>vVvVi+Vvy e ==€e)=>V| =V

€1 = Vi € =>Vy €3 =V3 e=v e, = V) €2;,=Vp

if (e1){ez}else{es} = ifvithenvyelsevs x=g=letx=v e;e5= viinwv

Write your code on the next page

21

Here is the ast types again:

type expr = Int of int | ID of string | Add of expr * expr
| Equal of expr * expr | If of expr * expr * expr
type stmt = Seq of stmt * stmt | Assign of string * expr

The rules:

e1 =V e =V e1 =V €)=V

n—n X=X e1+er=>VvVi+Vvy e} ==€e)=>V| =V

€1 =V € =>Vy €3 =V3 e=>v e, = V) €2;,= Vp

if (e1){ez}else{es} = ifvithenvyelsevs x=g=letx=v e;e5=viinv

(* stmt -> string *)
let rec to_ocaml ast =

let rec string_of_expr expr = match expr with
Int(i) -> string_of_int i

|[ID(x) -> x
[Add(el,e2) -> string of_expr el ~ " + " ~ string_of_expr e2
|[Equal(el,e2) -> string of _expr el =~ " = " "~ string of_expr e2
[If(el,e2,e3) -> "if " ~ string of_expr el ~ " then " " string_of_expr e2 ~
" else " ~ string_of_expr e3
in
match ast with
Seq(s1l,s2) -> (to_ocaml s1) =~ " in " ~ (to_ocaml s2)
|Assign(var,e) -> "let " ~ var = " =" " (string_of_expr e)

Restrictions: You are not allowed to use imperative OCaml; you can define recursive helper/helper functions below the
function signatures we provided. You are not allowed to use any List module functions except the ones already given to you
on the cheat sheet, otherwise you may use anything in StdLib (string_of_int and the ~ operator are particularly useful, look
at the cheat sheet).

For this question, given a modified subset of smallc as a AST, return a string of the equivalent OCaml Code (Recall your
evaluator from Project 4).

type expr = Int of int | ID of string | Add of expr * expr
| Equal of expr * expr | If of expr * expr * expr
type stmt = Seq of stmt * stmt | Assign of string * expr

Given the AST:

let ast = Seq(Assign("x",Int(4)),
Assign("y",If(Equal(Int(5),Int(6)),
ID(IIXH) s
Add(Int(6),Int(8)))))

Expected Output:

to_ocaml ast = "let x = 4 in let y = if 5 = 6 then x else 6 + 8"

22

We do NOT care about spaces in the output, so the following is acceptable:
to_ocaml ast = "letx=4inlety=if5=6thenxelse6+8"
(C Program that generated AST):

int main(){

x = 4;
y = if (5 = 6){
X
Yelsed{
6 + 8
}

3

You may use the following Operational Semantics if needed:

e1 =V € >V €1 =V €)=V

n—n X=X ej+ey=>vVvi+vy e} ==6€er=>V| =V

€1 = Vi € =>Vy €3 =V3 e=>yv e, >V €23;,=>Vp

if (e1){ez}else{es} = ifvithenvyelsevs x=g=letx=v e;e5=viinv
Write your code on the next page

23

Here is the ast types again:

type expr = Int of int | ID of string | Add of expr * expr
| Equal of expr * expr | If of expr * expr * expr
type stmt = Seq of stmt * stmt | Assign of string * expr

The rules:

e1 =V e =V e1 =V €)=V

n—n X=X e1+er=>VvVi+Vvy e} ==€e)=>V| =V

€1 =V € =>Vy €3 =V3 e=>v e, = V) €2;,= Vp

if (e1){ez}else{es} = ifvithenvyelsevs x=g=letx=v e;e5=viinv

(* stmt -> string *)
let rec to_ocaml ast =

let rec string_of_expr expr = match expr with
Int(i) -> string_of_int i

|[ID(x) -> x
[Add(el,e2) -> string of_expr el ~ " + " ~ string_of_expr e2
|[Equal(el,e2) -> string of _expr el =~ " = " "~ string of_expr e2
[If(el,e2,e3) -> "if " ~ string of_expr el ~ " then " " string_of_expr e2 ~
" else " ~ string_of_expr e3
in
match ast with
Seq(s1l,s2) -> (to_ocaml s1) =~ " in " ~ (to_ocaml s2)
|Assign(var,e) -> "let " ~ var = " =" " (string_of_expr e)

Restrictions: You are not allowed to use imperative OCaml; you can define recursive helper/helper functions below the
function signatures we provided. You are not allowed to use any List module functions except the ones already given to you

on the cheat sheet, otherwise you may use anything in StdLib (string_of_int and the ~ operator are particularly useful, look
at the cheat sheet).

For this question, given a modified subset of smallc as a AST, return a string of the equivalent OCaml Code (Recall your
evaluator from Project 4).

type expr = Bool of bool | ID of string | Or of expr * expr
| NotEqual of expr * expr | If of expr * expr * expr
type stmt = Seq of stmt * stmt | Assign of string * expr

Given the AST:

let ast = Seq(Assign("x",Bool(true)),
Assign("y",If (NotEqual(Bool(false),Bool(true)),
ID("X") s
Or (Bool(true) ,Bool(false)))))

Expected Output:

to_ocaml ast = "let x = true in let y = if false <> true then x else true || false"

24

(C Program that generated AST):

int main(){

X = true;
y = if (false != true){
X
} else{
true || false
}

3

You may use the following Operational Semantics if needed:

e1 =V € =>W e1 =V € =>W

b=b x=>x e1&&e) = vi&&vy ell=e; > vi <> v

€1 =V € =>Vy €3 =V3 e=>v e, => V) €23;,=>Vp

if (e1){ez}else{es} = ifvithenvyelsevs x=g=letx=v e;e5=viinv

Write your code on the next page

25

Here is the ast types again:

type expr = Bool of bool | ID of string | Or of expr * expr
| NotEqual of expr * expr | If of expr * expr * expr
type stmt = Seq of stmt * stmt | Assign of string * expr

The rules:

el =V €)=V €1 =V €)=V

b=b x=x e1&&ey = vi&&vy eil=er = vi<>v

€1 = Vi € =>Vy €3 =V3 e=>v e, = V) €2;,= Vp

if (e1){ez}else{es} = ifvithenvyelsevs x=g=letx=v e;e5=viinv

(* stmt -> string *)
let rec to_ocaml ast =

let rec string_of_expr expr = match expr with
Bool(b) -> string_of_bool b

|[ID(x) -> x
|And(el,e2) -> string_of_expr el ~ " && " ~ string_of_expr e2
[NotEqual(el,e2) -> string_of_expr el =~ " <> " ~ string of_expr e2
[If(el,e2,e3) -> "if " ~ string of_expr el ~ " then " " string_of_expr e2 ~
" else " ~ string_of_expr e3

in

match ast with

Seq(s1l,s2) -> (to_ocaml s1) =~ " in " ~ (to_ocaml s2)

|Assign(var,e) -> "let " ~ var = " =" " (string_of_expr e)

Restrictions: You are not allowed to use imperative OCaml; you can define recursive helper/helper functions below the
function signatures we provided. You are not allowed to use any List module functions except the ones already given to you

on the cheat sheet, otherwise you may use anything in StdLib (string_of_int and the ~ operator are particularly useful, look
at the cheat sheet).

For this question, given a modified subset of smallc as a AST, return a string of the equivalent OCaml Code (Recall your
evaluator from Project 4).

type expr = Bool of bool | ID of string | Or of expr * expr
| NotEqual of expr * expr | If of expr * expr * expr
type stmt = Seq of stmt * stmt | Assign of string * expr

Given the AST:

let ast = Seq(Assign("x",Bool(true)),
Assign("y",If (NotEqual(Bool(false),Bool(true)),
ID("X") s
Or (Bool(true) ,Bool(false)))))

Expected Output:

to_ocaml ast = "let x = true in let y = if false <> true then x else true || false"

26

(C Program that generated AST):

int main(){

X = true;
y = if (false != true){
X
} else{
true || false
}

3

You may use the following Operational Semantics if needed:

e1 =V € =>W e1 =V € =>W

b=b x=>x e1&&e) = vi&&vy ell=e; > vi <> v

€1 =V € =>Vy €3 =V3 e=>v e, => V) €23;,=>Vp

if (e1){ez}else{es} = ifvithenvyelsevs x=g=letx=v e;e5=viinv

Write your code on the next page

27

Here is the ast types again:

type expr = Bool of bool | ID of string | Or of expr * expr
| NotEqual of expr * expr | If of expr * expr * expr
type stmt = Seq of stmt * stmt | Assign of string * expr

The rules:

el =V €)=V €1 =V €)=V

b=b x=x e1&&ey = vi&&vy eil=er = vi<>v

€1 = Vi € =>Vy €3 =V3 e=>v e, = V) €2;,= Vp

if (e1){ez}else{es} = ifvithenvyelsevs x=g=letx=v e;e5=viinv

(* stmt -> string *)
let rec to_ocaml ast =

let rec string_of_expr expr = match expr with
Bool(b) -> string_of_bool b

|[ID(x) -> x
|And(el,e2) -> string_of_expr el ~ " && " ~ string_of_expr e2
[NotEqual(el,e2) -> string_of_expr el =~ " <> " ~ string of_expr e2
[If(el,e2,e3) -> "if " ~ string of_expr el ~ " then " " string_of_expr e2 ~
" else " ~ string_of_expr e3

in

match ast with

Seq(s1l,s2) -> (to_ocaml s1) =~ " in " ~ (to_ocaml s2)

|Assign(var,e) -> "let " ~ var = " =" " (string_of_expr e)

28

Cheat Sheet

OCaml

(* Map and Fold *)
(x (’a => ’b) -> ’a list -> ’b list *)
let rec map £ 1 = match 1 with

0 ->10

[x::xs => (£ x)::(map f xs)

(x (’a => ’b -> ’a) -> ’a -> ’b list -> ’a *)
let rec fold_left £ a 1 = match 1 with

0 ->a

|x::xs -> fold_left f (f a x) xs

(x (’a => ’b => ’b) -> ’a list -> ’b -> ’b *)
let rec fold_right £ 1 a = match 1 with

(1 ->a

x::xs => £ x (fold_right f xs a)
Structure of Regex

R —» @
| o
|
|
|
|

29

(* 0Caml Function Types *)

o —-: ’a —> ’a list -> ’a list

Q@ -: ’a list -> ’a list -> ’a list

+, -, ¥, / -: int -> int -> int

+., —., *., /. —: float -> float -> float
&, || -: bool -> bool -> bool

not -: bool -> bool

—-: string -> string -> string

=>,>,=,<,<=, <> :- ’a -> ’a -> bool
string_of_int -: int -> string
string_of_bool -: bool -> string

NFA to DFA Algorithm (Subset Construction Algorithm)

NFA (input): (Z, Q, qo, Fn, 5),
(%, R, ro, F4, 6n)
R« {}
ro « € — closure(o, qop)
while 3 an unmarked state r € R do
mark r
forall 2 € > do
E <« move(o,r,a)
e «— ¢ — closure(o, E)
if e ¢ R then
R « RU({e}
end if
op —o,U{r,a, e}
end for
end while
Fg «— {r|3s erwiths e F,}

DFA

(output):

Regex

zero or more repetitions of the preceding character or group

+

one or more repetitions of the preceding character or group

?

zero or one repetitions of the preceding character or group

any character

rlr

ry or rp (eg. a|b means 'a’ or 'b’)
[abc] | match any character in abc
[Cr] anything except rq (eg. ["abc] is anything but an 'a’,'b’, or ’c’)
[ri-r2] | range specification (eg. [a-z] means any letter in the ASCII range of a-z)

{n}

exactly n repetitions of the preceding character or group

{n}

at least n repetitions of the preceding character or group

:{m,n}

at least m and at most n repetitions of the preceding character or group

start of string

end of string

(r1)

capture the pattern r; and store it somewhere (match group in Python)

\d

any digit, same as [0-9]

\s

any space character like \n, \t, \r, \f, or space

30

