
CMSC330 - Organization of Programming Languages
Spring 2025 - Exam 1 Solutions

CMSC330 Course Staff
University of Maryland

Department of Computer Science

Name:

UID:

I pledge on my honor that I have not given or received any unauthorized assistance on this assignment/examination

Signature:

Ground Rules

• Please write legibly. If we cannot read your answer you will not receive credit.
• You may use anything on the accompanying reference sheet anywhere on this exam
• Please remove the reference sheet from the exam
• You may not leave the room or hand in your exam within the last 10 minutes of the exam
• If anything is unclear, ask a proctor. If you are still confused, write down your assumptions in the margin

Question Points
P1 10
P2. 5
P3. 20
P4. 6
P5. 15
P6. 6
P7. 4
P8. 9
P9. 5
P10. 20
Total 100

1

Problem 1: Concepts [Total 10 pts]

True False
let f = fun x -> fun y -> [x y] is an example of a higher order function T F

If you are at some state B in an FSM, the history of your path determines where you go next T F

If a function’s type is ’a -> ’b -> int, then the two inputs must be different type T F

In the expression let x = 3 in let x = 4 in x, only one variable binding occurs T F

let f = print string "hello" will print the string ”hello” everytime f is used T F

Regular Expressions can describe infinitely long strings T F

All compiled languages use explicit typing T F

An accept function that works for NFAs would also work for DFAs T F

OCaml is statically typed T F

In Ocaml, a multi-argument function is just a chain of single argument functions T F

In Ocaml, a multi-argument function is not equivalent to chaining single argument functions together T F

2

Problem 2: Project 2 [Total 5 pts]

Given a different implementation of the function fold tree, which folds a tree into a list.

type t ree = Node of t ree * i n t * tree | Leaf

l e t rec f o l d t r e e f b t =
match t with
| Leaf −> b
| Node (l , v , r) −> f (f o l d t r e e f b r) [v] (f o l d t r e e f b l)

Suppose that we write a mystery function that returns the traversal of the tree using tree fold.

let mystery t = fold_tree (fun x y z -> y @ z @ x) [] t

Describe the result of calling mystery on a tree? One sentence only.

It’d be pre-order.

Given a different implementation of the function fold tree, which folds a tree into a list.

type t ree = Node of t ree * i n t * tree | Leaf

l e t rec f o l d t r e e f b t =
match t with
| Leaf −> b
| Node (l , v , r) −> f [v] (f o l d t r e e f b r) (f o l d t r e e f b l)

Suppose that we write a mystery function that returns the traversal of the tree using tree fold.

let mystery t = fold_tree (fun x y z -> z @ x @ y) [] t

Describe the result of calling mystery on a tree? One sentence only.

It’d be in-order.

3

Here is a fold tree implementation. It folds a tree into a list.

type t ree = Node of t ree * i n t * tree | Leaf

l e t rec f o l d t r e e f b t =
match t with
| Leaf −> b
| Node (l , v , r) −> f [v] (f o l d t r e e f b l) (f o l d t r e e f b r)

Suppose we write a post order function that returns the post order traversal using tree fold.

let post_order tree = fold_tree (fun v l r -> l @ r @ v) [] tree

How would the result of calling post order on a tree change if we change fold tree to the following but leave everything
else the same? One sentence only.

l e t rec f o l d t r e e f b t =
match t with
| Leaf −> b
| Node (l , v , r) −> f (f o l d t r e e f b r) [v] (f o l d t r e e f b l)

It’d be pre-order.

Here is a fold tree implementation. It folds a tree into a list.

type t ree = Node of t ree * i n t * tree | Leaf

l e t rec f o l d t r e e f b t =
match t with
| Leaf −> b
| Node (l , v , r) −> f [v] (f o l d t r e e f b l) (f o l d t r e e f b r)

Suppose we write a post order function that returns the post order traversal using fold tree.

let post_order tree = fold_tree (fun v l r -> l @ r @ v) [] tree

How would the result of calling post order on a tree change if we change fold tree to the following but leave everything
else the same? One sentence only.

l e t rec f o l d t r e e f b t =
match t with
| Leaf −> b
| Node (l , v , r) −> f (f o l d t r e e f b l) (f o l d t r e e f b r) [v]

It would be reverse in-order (right, root, left)

4

Problem 3: FSM and Regex [Total 20 pts]

The following questions are independent from each other.

(a) Convert the following regular expression into an FSM (draw a box around your final answer):

[ab]+c? [15 pts]

1 2 3
a
b
ϵ

c

(b) Acceptance [5 pts]
Given the following NFA, select all of the strings it accepts:

2

3

0

1

a

a

ab b ϵϵ

A a B abbaabba C aaaa
D abbba E abb F ”” (empty string)

Problem 4: Regex [Total 6 pts]

For an Σ = {a, b, c}, write a regular expression for strings that are in alphabetical order that have an even number of ”a”s,
an odd number of ”b”s and any number of ”c”s.

valid strings

aab

bbbc

b

aaaabbbccccccc

invalid strings

abc

aabb

abbc

baac

(aa)*b(bb)*c*

(xx)*y(yy)*z*

5

Problem 5: Debugging [Total 15 pts]

We want to count the area codes from a list of phone numbers, . We use the following 3 functions to implement it.
1) The function get area code takes a phone number as an argument, returns (Some area code) if the phone number is valid,
otherwise returns None. A phone number’s area code is the first 3 digits.

Valid Phone Number formats: (XXX)XXXXXXX or XXXXXXXXXX

Examples:

get_area_code "(1234567890" = None

get_area_code "1234567890" = Some("123")

get_area_code "hello" = None

get_area_code = "(111)2223333" = Some("111")

(* string -> string Option *)

let get_area_code phone_number =

1 let phone_re = "(?([0-9]{3}))?[0-9]{7}" in

... (* assume the rest works and uses the above regex to check the phone number *)

2) The function update count, will update the counts of each area code in the database. If the area code does not exist, add
it to the database. The database is represented as a (string * int) list.

Examples:

update_count [("122",1)] (Some "123") = [("122", 1); ("123", 1)]

update_count [] (Some "123") = [("123", 1)]

update_count [] None = []

update_count [("122",1)] None = [("122", 1)]

update_count [("122",1);("123",1)] (Some "123") = [("122", 1); ("123", 2)]

let rec update_count db number =

match db,number with

2 _,None -> db

3 |(num,count)::xs,Some(area) ->

4 if area = num then

5 (num,count+1)::xs

6 else

7 update_count xs number

8 |[],Some(area) -> [(area,0)]

3) The function area counts a list of phone numbers and returns a (string * int) list. The string in the return type
represents the area code of a phone number, and the int is the count of how many times that area code was in the list. If
a phone number is not of valid format, the string is ignored.

Examples:

area_counts ["(123)4567890";"(098)7654321";"1234567890"] = [("123",2);("098",1)]

area_counts ["(111)2223333";"1114445555"] = [("111",2)]

area_counts [] = []

area_counts ["9998887777";"Malformed-ignored"] = [("999",1)]

let area_counts lst =

9 fold_left (fun acc x ->

10 update_count acc (get_area_code x))

11 [] lst

There are at least 3 bugs present in the lines with line numbers. Find them and fix them in the next page. Each bug should
just require you to rewrite a single line of the program. If a line does not have a number next to it, then that line cannot be
rewritten.

6

Note: Line is just to help grade, you will not get points just for identifying the line
(a) Error 1 [5 pts]

Line: 1 Fix: (\([0-9]{3}\)|[0-9]{3})[0-9]{7}

(b) Error 2 [5 pts]

Line: 7 Fix: (num,count)::(update count xs number)

(c) Error 3 [5 pts]

Line: 8 Fix: [(area,1)]

Problem 6: OCaml Typing [Total 6 pts]

Give the type of the function ’foo’. If there is a type error, put ”ERROR”

let foo x y z = match x with

a -> a

|x::[] -> [z]

|_ -> [7]

int list -> ’a -> int -> int list

let foo a b =

map (a b) [1;2;3]

(’a -> int -> ’b) -> ’a -> ’b list

Problem 7: Evaluation [Total 4 pts]

Evaluate the following OCaml expressions. If there is a compilation error, put ”ERROR”

let foo f l =

fold_left (fun a x -> ((f x)::a)) [] l in

foo (fun x -> x * 5) [1;2;3;4;5]

[25; 20; 15; 10; 5]

let foo =

fun () -> let x = ref "hello" in

fun a -> let res = !x in

x := !x ^ a; res in

[foo () " World"; foo () " Everyone"]

[”hello”;”hello”]

7

Problem 8: Property Based Testing [Total 9 pts]

Consider the following incorrect filter function for a list.

let rec filter f lst = match lst with

[] -> []

|x::xs -> if f x then (f x)::(filter f xs) else filter f xs

Consider the following property p about the filter function:

p : filtering a non-empty list with function f and filtering the same list with not f should result in 2 mutually exclusive lists

Using a correct implementation of filter, this property p should hold true for all valid inputs?

Yes No

Using our implementation of filter, this property p should hold true for all valid inputs?

Yes No

Suppose I encode this property in OCaml to be used in OCaml’s QCheck library as the following:

let prop f lst = filter f lst <> filter (fun x -> not (f x)) lst

The above prop function is a valid encoding of the property p .

Yes No

Consider the following property p about the filter function:

p : filtering a non-empty list with function f should always result in a shorter list than we started with

Using a correct implementation of filter, this property p should hold true for all valid inputs?

Yes No

Using our implementation of filter, this property p should hold true for all valid inputs?

Yes No

Suppose I encode this property in OCaml to be used in OCaml’s QCheck library as the following:

let prop f lst = List.length (filter f lst) < List.length (lst)

The above prop function is a valid encoding of the property p .

Yes No

8

Problem 9: Error Handling [Total 5 pts]

Match the following error messages with the best possible fix. Each fix must only be used once, so choose the fix that fits
the best.

Error Answer Fix
Exception: Match failure B A Make sure nested let expressions have a

matching in keyword.
Error: This expression has

type ’a but an expression was

expected of type ’a list

D B Check to make sure you are using exhaustive
pattern matching

Error: This expression has

type int but an expression was

expected of type bool

C C Make sure the guard of an if expression is the
correct type

Fatal Error: exception

Failure("unimplemented")

E D Make sure you are using cons and not @

Syntax Error A E Make sure you saved your code before testing

Match the following error messages with the best possible fix.

Error Answer Fix
Error: This expression has

type ’a but an expression was

expected of type ’a list

D A Make sure nested let expressions have a
matching in keyword.

Exception: Match failure B B Check to make sure you are using exhaustive
pattern matching

Syntax Error A C Make sure the guard of an if expression is the
correct type

Error: This expression has

type int but an expression was

expected of type bool

C D Make sure you are using cons and not @

Fatal Error: exception

Failure("unimplemented")

E E Make sure you saved your code before testing

9

Problem 10: Coding [Total 20 pts]

Restrictions for both coding questions: You are not allowed to use imperative OCaml; you can define recursive helper/helper
functions below the function signatures we provided. You are not allowed to use any List module functions except the ones
already given to you on the cheat sheet. (Function #2 continues on the next page!)

(a) Query [15 pts]
Write a function called huh that takes in a query type and a value. Return Some value if the query is satisfied and None
otherwise.

type ’a query = And of query * query | Not of query | Condition of (’a -> bool)

Examples:

The query q represents all values not > 4 and that are even

let q = And(Not(Condition(fun x -> x > 4)), Condition(fun x -> x mod 2 = 0))

huh q 4 = Some(4)

huh q 2 = Some(2)

huh q 8 = None

(* query -> ’a -> ’a Option *))

let rec huh query value =

let rec work_huh query value = match query with

|And(x,y) -> (work_huh x value) && (work_huh y value)

|Not(x) -> not (work_huh x value)

|Condition(f) -> f value in

if work_huh query value then Some(value) else None

--

type ’a query = OR of query * query | Not of query | Condition of (’a -> bool)

Examples:

The query q represents all values not > 4 or that are even

let q = OR(Not(Condition(fun x -> x > 4)), Condition(fun x -> x mod 2 = 0))

huh q 4 = Some(4)

huh q 2 = Some(2)

huh q 7 = None

(* query -> ’a -> ’a Option *))

let rec huh query value =

let rec work_huh query value = match query with

|OR(x,y) -> (work_huh x value) || (work_huh y value)

|Not(x) -> not (work_huh x value)

|Condition(f) -> f value in

if work_huh query value then Some(value) else None

10

(b) Tree [5 pts]
Suppose your above huh function works. Write a function called query treewhich takes in a query and a tree, then returns
all the values that matches the query in a list.

type tree = Node of tree * int * tree | Leaf

Examples:

let q = And(Not(Condition(fun x -> x > 4)), Condition(fun x -> x mod 2 = 0))

let t = Node(Node(Leaf, 1, Leaf), -10, Node(Node(Leaf, 2, Leaf), 8, Leaf))

-10

/ \

1 8

/

2

query_tree q t = [-10;2] (*order does not matter *)

Examples:

let q = OR(Not(Condition(fun x -> x > 4)), Condition(fun x -> x mod 2 = 0))

let t = Node(Node(Leaf, 1, Leaf), -10, Node(Node(Leaf, 2, Leaf), 7, Leaf))

-10

/ \

1 7

/

2

query_tree q t = [-10;2;1] (*order does not matter *)

let rec query_tree q t = match t with

let rec query_tree q t = match t with

|Leaf -> []

|Node(l,v,r) -> if huh q v = Some(v) then (query_tree q l) @ [v] @ (query_tree q r)

else (query_tree q l) @ (query_tree q r);;

11

(c) get nth level [10 pts]
The first function will be get nth level. This function takes in a tree and a positive integer n . It will get all the values at
the nth level of the tree and put them into a list.

(* Example tree: t

1 <- level 1

/ \

2 3 <- level 2

/ \ / \

4 5 6 7 <- level 3

/ \ / \ / \ / \

8 9 10 11 12 13 14 15 <- level 4

*)

get_nth_level t 1 = [1]

get_nth_level t 2 = [2;3]

get_nth_level t 3 = [4;5;6;7]

get_nth_level t 5 = []

(* Note: order of resulting list does not matter *)

type ’a tree = Petal | Stem of ’a tree * ’a * ’a tree

let rec get_nth_level tree n =

Solution

let rec get_nth_level tree n =

let rec helper t n = match t with

Petal -> []

|Stem(l,v,r) -> if n = 0 then [v] else

helper l (n-1) @ helper r (n-1)

in

helper tree (n-1);;

--

type ’a tree = External | Internal of ’a tree * ’a * ’a tree

let rec get_nth_level tree n =

let rec helper t n = match t with

External -> []

|Internal(l,v,r) -> if n = 0 then [v] else

helper l (n-1) @ helper r (n-1)

in

helper tree (n-1);;

12

(d) every nth level [10 pts]
The second function you will write is called every nth level. This function takes in a tree and a positive integer n . Return
a list of all the values found at every nth level of the tree (please look at the examples below carefully). You may assume
your get nth level function works and you may use it here.

(* using the same tree type *)

type ’a tree = Petal | Stem of ’a tree * ’a * ’a tree

(* using the same example tree

Example tree t

1 <- level 1

/ \

2 3 <- level 2

/ \ / \

4 5 6 7 <- level 3

/ \ / \ / \ / \

8 9 10 11 12 13 14 15 <- level 4

*)

every_nth_level t 1 = [1;2;3;4;5;6;7;8;9;10;11;12;13;14;15];;

every_nth_level t 2 = [2;3;8;9;10;11;12;13;14;15];;

every_nth_level t 3 = [4;5;6;7];;

every_nth_level t 5 = [];;

(* Note: order of resulting list does not matter *)

‘Using get_nth_level

let every_nth_level tree n =

let rec loop i =

if i mod n = 0 then

match get_nth_level tree i with

|[] -> []

|x -> x @ (loop (i+1))

else

loop (i+1)

in

loop 1;;

not using get_nth_level

let rec every_nth_level t n =

let rec helper t curr = match t with

|Petal -> []

|Stem(l,v,r) -> let curr’,add = if curr = 1 then n,[v] else (curr-1),[] in

add @ (helper l curr’) @ (helper r curr’)

in

helper t n

--

let rec every_nth_level t n =

let rec helper t curr = match t with

|External -> []

|Internal(l,v,r) -> let curr’,add = if curr = 1 then n,[v] else (curr-1),[] in

add @ (helper l curr’) @ (helper r curr’)

13

