CMSC330 - Organization of Programming Languages
Spring 2025 - Exam 1 Solutions

CMSC330 Course Staff
University of Maryland
Department of Computer Science

Name:

UID:

| pledge on my honor that | have not given or received any unauthorized assistance on this assignment/examination

Signature:

Ground Rules

Please write legibly. If we cannot read your answer you will not receive credit.
You may use anything on the accompanying reference sheet anywhere on this exam

Please remove the reference sheet from the exam

You may not leave the room or hand in your exam within the last 10 minutes of the exam

If anything is unclear, ask a proctor. If you are still confused, write down your assumptions in the margin

Question | Points
P1 10
P2. 5
P3. 20
Py 6
Ps. 15
P6. 6
P7. A
P8.

Pa.
P10. 20
Total 100

Problem 1: Concepts

let f = fun x -> fun y -> [x y] isan example of a higher order function

If you are at some state B in an FSM, the history of your path determines where you go next
If a function’s type is ’a -=> ’b -> int, then the two inputs must be different type

In the expression let x = 3 in let x = 4 in X, only one variable binding occurs
let f = print_string "hello" will print the string "hello” everytime f is used
Regular Expressions can describe infinitely long strings

All compiled languages use explicit typing

An accept function that works for NFAs would also work for DFAs

OCaml is statically typed

In Ocaml, a multi-argument function is just a chain of single argument functions

In Ocaml, a multi-argument function is not equivalent to chaining single argument functions together

-
=
[
(]

ON N N NON NONCORCORCON J

Y
—_—
(7]
o

L BOBONON NON N N N BCO

[Total 10 pts]

Problem 2: Project 2 [Total 5 pts]

Given a different implementation of the function fold_tree, which folds a tree into a list.

type tree = Node of tree * int * tree | Leaf

let rec fold_tree f b t =
match t with
| Leaf -> b
| Node (L, v, r) -> f (fold_-tree f b r) [v] (fold_-tree f b L)

Suppose that we write a mystery function that returns the traversal of the tree using tree fold.
let mystery t = fold_tree (fun x y z >y @ z @ x) [] t

Describe the result of calling mystery on a tree? One sentence only.

It'd be pre-order.

Given a different implementation of the function fold_tree, which folds a tree into a list.

type tree = Node of tree * int * tree | Leaf

let rec fold_tree f bt =
match t with
| Leaf -> b
| Node (L, v, r) -> f [v] (fold_tree f b r) (fold_tree f b L)

Suppose that we write a mystery function that returns the traversal of the tree using tree fold.
let mystery t = fold_tree (fun x yz >z @x Qy) [t

Describe the result of calling mystery on a tree? One sentence only.

It'd be in-order.

Here is a fold_tree implementation. It folds a tree into a list.

type tree = Node of tree * int * tree | Leaf

let rec fold_tree f bt =
match t with
| Leaf -> b
| Node (L, v, r) -> f [v] (fold_tree f b L) (fold_tree f b r)

Suppose we write a post_order function that returns the post_order traversal using tree fold.
let post_order tree = fold_tree (fun v 1 r -> 1 @ r @ v) [] tree

How would the result of calling post _order on a tree change if we change fold_tree to the following but leave everything
else the same? One sentence only.

let rec fold_tree f bt =
match t with
| Leaf -> b
| Node (L, v, r) -> f (fold_tree f b r) [v] (fold_tree f b L)

It'd be pre-order.

Here is a fold_tree implementation. It folds a tree into a list.

type tree = Node of tree * int * tree | Leaf

let rec fold_tree f b t =
match t with
| Leaf > b
| Node (L, v, r) -> f [v] (fold_tree f b L) (fold_tree f b r)

Suppose we write a post_order function that returns the post_order traversal using fold _tree.
let post_order tree = fold_tree (fun v 1 r -> 1 @ r @ v) [] tree

How would the result of calling post_order on a tree change if we change fold_tree to the following but leave everything
else the same? One sentence only.

let rec fold_tree f bt =
match t with
| Leaf -=> b
| Node (L, v, r) -> f (fold_tree f b L) (fold_tree f b r) [v]

It would be reverse in-order (right, root, left)

Problem 3: FSM and Regex

The following questions are independent from each other.
(a) Convert the following regular expression into an FSM (draw a box around your final answer):

[ab]+c?

(b) Acceptance
Given the following NFA, select all of the strings it accepts:

. a G abbaabba . aaaa
@abbba .abb . (empty string)

Problem 4: Regex

Foran X = {a, b, c}, write a regular expression for strings that are in alphabetical order that have an even number of "a”s,

" n

an odd number of "b”s and any number of "c”s.

valid strings invalid strings

aab abc

bbbc aabb

b abbc

aaaabbbccccccc baac
(aa)*b(bb)*c*
(xx)*y(yy)*z*

[Total 20 pts]

[15 pts]

[5 pts]

[Total 6 pts]

Problem 5: Debugging [Total 15 pts]

We want to count the area codes from a list of phone numbers, . We use the following 3 functions to implement it.
1) The function get_area_code takes a phone number as an argument, returns (Some area_code) if the phone number is valid,
otherwise returns None. A phone number’s area code is the first 3 digits.

Valid Phone Number formats: (XXX)XXXXXXX or XXXXXXXXXX
Examples:
get_area_code "(1234567890" = None
get_area_code "1234567890" = Some("123")
get_area_code "hello" = None
get_area_code = "(111)2223333" = Some("111")

(* string -> string Option *)
let get_area_code phone_number =
1 let phone_re = "(7([0-9]1{3}))7[0-9]1{7}" in
(* assume the rest works and uses the above regex to check the phone number *)

2) The function update_count, will update the counts of each area code in the database. If the area code does not exist, add
it to the database. The database is represented as a (string * int) list.

Examples:

update_count [("122",1)] (Some "123") = [("122", 1); ("123", 1)]
update_count [] (Some "123") = [("123", 1)]

update_count [] None = []

update_count [("122",1)] None = [("122", 1)]

update_count [("122",1);("123",1)] (Some "123") = [("122", 1); ("123", 2)]

let rec update_count db number =
match db,number with
_,None -> db
| (num, count) : :xs,Some (area) —>
if area = num then
(num, count+1) : :xs
else
update_count xs number
| [1,Some(area) -> [(area,0)]

0 ~N O O WwN

3) The function area_counts a list of phone numbers and returnsa (string * int) list.The stringinthe returntype
represents the area code of a phone number, and the int is the count of how many times that area code was in the list. If
a phone number is not of valid format, the string is ignored.

Examples:

area_counts ["(123)4567890";"(098)7654321";"1234567890"] = [("123",2);("098",1)]
area_counts ["(111)2223333";"1114445555"] = [("111",2)]

area_counts [] = []

area_counts ["9998887777";"Malformed-ignored"] = [("999",1)]

let area_counts 1lst =

9 fold_left (fun acc x ->
10 update_count acc (get_area_code x))
11 (1 1st

There are at least 3 bugs present in the lines with line numbers. Find them and fix them in the next page. Each bug should
just require you to rewrite a single line of the program. If a line does not have a number next to it, then that line cannot be
rewritten.

Note: Line is just to help grade, you will not get points just for identifying the line

(a) Error 1 [5 pts]
Line: 1 Fix: (\([0-91{3}\) I [0-91{3}) [0-91{7}
(b) Error 2 [5 pts]
Line: 7 Fix: (num,count):(update_count xs number)
(c) Error 3 [5 pts]
Line: 8 Fix: [(area,)]
Problem 6: OCaml Typing [Total 6 pts]
Give the type of the function >foo’. If there is a type error, put "ERROR”
let foo x y z = match x with let foo a b =

a > a map (a b) [1;2;3]

|x::[1 > [z]

l_ —> [7]

int list -> ’a -> int -> int list (’a -> int -> ’b) -> ’a -> ’b list

Problem 7: Evaluation [Total 4 pts]

Evaluate the following OCaml expressions. If there is a compilation error, put "ERROR”

let foo £ 1 = let foo =
fold_left (fun a x -> ((f x)::a)) [1 in fun () -> let x = ref "hello" in
foo (fun x -> x * 5) [1;2;3;4;5] fun a -> let res = !x in
X := Ix 7 a; res in

[foo (O " World"; foo () " Everyone"]

[25; 20; 15; 10; 5] ["hello”;"hello”]

Problem 8: Property Based Testing [Total 9 pts]
Consider the following incorrect £ilter function for a list.

let rec filter f 1lst = match 1lst with
0> 1
|x::xs -> if f x then (f x)::(filter f xs) else filter f xs

Consider the following property p about the £ilter function:
p : filtering a non-empty list with function f and filtering the same list with not £ should result in 2 mutually exclusive lists

Using a correct implementation of £ilter, this property p should hold true for all valid inputs?

®

Using our implementation of filter, this property p should hold true for all valid inputs?

Suppose | encode this property in OCaml to be used in 0OCaml’s QCheck library as the following:
let prop f 1st = filter f 1lst <> filter (fun x -> not (f x)) 1lst

The above prop function is a valid encoding of the property p.

®

Consider the following property p about the filter function:
p : filtering a non-empty list with function f should always result in a shorter list than we started with

Using a correct implementation of filter, this property p should hold true for all valid inputs?

Using our implementation of filter, this property p should hold true for all valid inputs?
Suppose | encode this property in OCaml to be used in OCaml’s QCheck library as the following:
let prop f 1st = List.length (filter f 1lst) < List.length (1st)

The above prop function is a valid encoding of the property p.

®

Problem 9: Error Handling

Match the following error messages with the best possible fix. Each fix must only be used once, so choose the fix that fits

the best.

Error Answer Fix

Exception: Match failure B Make sure nested let expressions have a
matching in keyword.

Error: This expression has D Check to make sure you are using exhaustive

type ’a but an expression was pattern matching

expected of type ’a list

Error: This expression has C Make sure the guard of an if expression is the

type int but an expression was correct type

expected of type bool

Fatal Error: exception E Make sure you are using cons and not @

Failure("unimplemented")

Syntax Error A Make sure you saved your code before testing

Match the following error messages with the best possible fix.

Error Answer Fix

Error: This expression has D Make sure nested let expressions have a

type ’a but an expression was matching in keyword.

expected of type ’a list

Exception: Match_failure B Check to make sure you are using exhaustive
pattern matching

Syntax Error A Make sure the guard of an if expression is the
correct type

Error: This expression has C Make sure you are using cons and not @

type int but an expression was

expected of type bool

Fatal Error: exception E Make sure you saved your code before testing

Failure("unimplemented")

[Total 5 pts]

Problem 10: Coding [Total 20 pts]

Restrictions for both coding questions: You are not allowed to use imperative OCaml; you can define recursive helper/helper
functions below the function signatures we provided. You are not allowed to use any List module functions except the ones
already given to you on the cheat sheet. (Function #2 continues on the next page!)

(a) Query [15 pts]
Write a function called huh that takes in a query type and a value. Return Some value if the query is satisfied and None
otherwise.

type ’a query = And of query * query | Not of query | Condition of (’a -> bool)

Examples:

The query q represents all values not > 4 and that are even

let q = And(Not(Condition(fun x -> x > 4)), Condition(fun x -> x mod 2 = 0))
huh q 4 = Some(4)

huh q 2 = Some(2)

huh q 8 = None

(* query -> ’a -> ’a Option *))
let rec huh query value =
let rec work_huh query value = match query with
[And(x,y) -> (work_huh x value) && (work_huh y value)
INot(x) -> not (work_huh x value)
[Condition(f) -> f value in
if work_huh query value then Some(value) else None

type ’a query = OR of query * query | Not of query | Condition of (’a -> bool)

Examples:
The query q represents all values not > 4 or that are even
let q = OR(Not(Condition(fun x -> x > 4)), Condition(fun x -> x mod 2 = 0))

huh q 4 = Some(4)
huh q 2 = Some(2)
huh q 7 = None

(* query -> ’a -> ’a Option %))
let rec huh query value =
let rec work_huh query value = match query with
[OR(x,y) -> (work_huh x value) || (work_huh y value)
INot(x) -> not (work_huh x value)
[Condition(f) -> f value in
if work_huh query value then Some(value) else None

10

(b) Tree [5 pts]
Suppose your above huh function works. Write a function called query_tree which takes in a query and a tree, then returns
all the values that matches the query in a list.

type tree = Node of tree * int * tree | Leaf

Examples:
let q = And(Not(Condition(fun x -> x > 4)), Condition(fun x -> x mod 2 = 0))
let t = Node(Node(Leaf, 1, Leaf), -10, Node(Node(Leaf, 2, Leaf), 8, Leaf))
-10
/ \
1 8
/
2
query_tree q t = [-10;2] (*order does not matter *)

Examples:
let q = OR(Not(Condition(fun x -> x > 4)), Condition(fun x -> x mod 2 = 0))
let t Node (Node(Leaf, 1, Leaf), -10, Node(Node(Leaf, 2, Leaf), 7, Leaf))
-10
/\
1 7
/
2
query_tree q t = [-10;2;1] (xorder does not matter *)

let rec query_tree q t = match t with
let rec query_tree q t = match t with
|Leaf -> []
INode(l,v,r) -> if huh q v = Some(v) then (query_tree q 1) @ [v] @ (query_tree q r)
else (query_tree q 1) @ (query_tree q r);;

1

(c) get_nth_level [10 pts]
The first function will be get_nth_level. This function takes in a tree and a positive integer n. It will get all the values at
the nth level of the tree and put them into a list.

(* Example tree: t

1 <- level 1
/ \
2 3 <- level 2
/ \ / \
4 5 6 7 <- level 3
/N /N /N /N
8 9 10 11 12 13 14 15 <- level 4
*)
get_nth_level t 1 = [1]
get_nth_level t 2 = [2;3]
get_nth_level t 3 = [4;5;6;7]
get_nth_level t 5 = []

(* Note: order of resulting list does not matter *)

type ’a tree = Petal | Stem of ’a tree * ’a * ’a tree

let rec get_nth_level tree n
Solution
let rec get_nth_level tree n
let rec helper t n = match t with
Petal -> []
|Stem(1,v,r) -> if n = O then [v] else
helper 1 (n-1) @ helper r (n-1)

in
helper tree (n-1);;

type ’a tree = External | Internal of ’a tree * ’a * ’a tree

let rec get_nth_level tree n
let rec helper t n = match t with
External -> []
| Internal(l,v,r) -> if n = 0 then [v] else
helper 1 (n-1) @ helper r (n-1)
in
helper tree (n-1);;

12

(d) every_nth_level [10 pts]
The second function you will write is called every nth_level. This function takes in a tree and a positive integer n. Return

a list of all the values found at every nth level of the tree (please look at the examples below carefully). You may assume

your get_nth_level function works and you may use it here.

(* using the same tree type *)
type ’a tree = Petal | Stem of ’a tree * ’a * ’a tree

(* using the same example tree
Example tree t

1 <- level 1
/ \
2 3 <- level 2
/ \ / \
4 5 6 7 <- level 3
/N /N /N /\
8 9 10 11 12 13 14 15 <- level 4
*)
every_nth_level t 1 = [1;2;3;4;5;6;7;8;9;10;11;12;13;14;15];;
every_nth_level t 2 = [2;3;8;9;10;11;12;13;14;15];;
every_nth_level t 3 = [4;5;6;7];;
every_nth_level t 5 = [];;

(* Note: order of resulting list does not matter *)
‘Using get_nth_level

let every_nth_level tree n =
let rec loop i =
if i mod n = 0 then
match get_nth_level tree i with

[-> 1
[x => x @ (loop (i+1))
else
loop (i+1)
in
loop 1;;

not using get_nth_level

let rec every_nth_level t n =
let rec helper t curr = match t with
|Petal -> []
|Stem(l,v,r) -> let curr’,add = if curr = 1 then n,[v] else (curr-1),[] in
add @ (helper 1 curr’) @ (helper r curr’)
in
helper t n

let rec every_nth_level t n =
let rec helper t curr = match t with
|External -> []
| Internal(1,v,r) -> let curr’,add = if curr = 1 then n,[v] else (curr-1),[] in
add @ (helper 1 curr’) @ (helper r curr’)

13

