CMSC330 - Organization of Programming Languages
Spring 2025 - Exam 1

CMSC330 Course Staff
University of Maryland
Department of Computer Science

Name:

UID:

| pledge on my honor that | have not given or received any unauthorized assistance on this assignment/examination

Signature:

Ground Rules

Please write legibly. If we cannot read your answer you will not receive credit.
You may use anything on the accompanying reference sheet anywhere on this exam

Please remove the reference sheet from the exam

You may not leave the room or hand in your exam within the last 10 minutes of the exam

If anything is unclear, ask a proctor. If you are still confused, write down your assumptions in the margin

Question | Points
P1 10
P2. 5
P3. 20
Py 6
Ps. 15
P6. 6
P7. A
P8.

Pa.
P10. 20
Total 100

Problem 1: Concepts

let f = fun x -> fun y -> [x y] isan example of a higher order function

If you are at some state B in an FSM, the history of your path determines where you go next
If a function’s type is ’a -=> ’b -> int, then the two inputs must be different type

In the expression let x = 3 in let x = 4 in X, only one variable binding occurs
let f = print_string "hello" will print the string "hello” everytime £ is used
Regular Expressions can describe infinitely long strings

All compiled languages use explicit typing

An accept function that works for NFAs would also work for DFAs

OCaml is statically typed

In Ocaml, a multi-argument function is just a chain of single argument functions

Problem 2: Project 2

Given a different implementation of the function fold_tree, which folds a tree into a list.

type tree = Node of tree * int * tree | Leaf

let rec fold_tree f b t =
match t with
| Leaf -> b
| Node (L, v, r) -> f (fold_-tree f b r) [v] (fold_-tree f b L)

Suppose that we write a mystery function that returns the traversal of the tree using tree fold.

let mystery t = fold_tree (fun x yz ->y @z @x) []t

Describe the result of calling mystery on a tree? One sentence only.

-
=
[
(]

@000 000

ONORONORORORONORONOL

[Total 10 pts]

[Total 5 pts]

Problem 3: FSM and Regex

The following questions are independent from each other.
(a) Convert the following regular expression into an FSM (draw a box around your final answer):

[ab]+c?

(b) Acceptance
Given the following NFA, select all of the strings it accepts:

@ a e abbaabba @ aaaa
@abbba @abb @ (empty string)

Problem 4: Regex

Foran X = {a, b, c}, write a regular expression for strings that are in alphabetical order that have an even number of "a”s,

an odd number of "b”s and any number of "c”s.

valid strings invalid strings
aab abc

bbbc aabb

b abbc
aaaabbbccccccc baac

[Total 20 pts]

[15 pts]

[5 pts]

[Total 6 pts]

Problem 5: Debugging [Total 15 pts]

We want to count the area codes from a list of phone numbers, . We use the following 3 functions to implement it.
1) The function get_area_code takes a phone number as an argument, returns (Some area_code) if the phone number is valid,
otherwise returns None. A phone number’s area code is the first 3 digits.

Valid Phone Number formats: (XXX)XXXXXXX or XXXXXXXXXX
Examples:
get_area_code "(1234567890" = None
get_area_code "1234567890" = Some("123")
get_area_code "hello" = None
get_area_code = "(111)2223333" = Some("111")

(* string -> string Option *)
let get_area_code phone_number =
1 let phone_re = "(7([0-9]1{3}))7[0-9]1{7}" in
(* assume the rest works and uses the above regex to check the phone number *)

2) The function update_count, will update the counts of each area code in the database. If the area code does not exist, add
it to the database. The database is represented as a (string * int) list.

Examples:

update_count [("122",1)] (Some "123") = [("122", 1); ("123", 1)]
update_count [] (Some "123") = [("123", 1)]

update_count [] None = []

update_count [("122",1)] None = [("122", 1)]

update_count [("122",1);("123",1)] (Some "123") = [("122", 1); ("123", 2)]

let rec update_count db number =
match db,number with
_,None -> db
| (num, count) : :xs,Some (area) —>
if area = num then
(num, count+1) : :xs
else
update_count xs number
| [1,Some(area) -> [(area,0)]

0 ~N O O WwN

3) The function area_counts a list of phone numbers and returnsa (string * int) list.The stringinthe returntype
represents the area code of a phone number, and the int is the count of how many times that area code was in the list. If
a phone number is not of valid format, the string is ignored.

Examples:

area_counts ["(123)4567890";"(098)7654321";"1234567890"] = [("123",2);("098",1)]
area_counts ["(111)2223333";"1114445555"] = [("111",2)]

area_counts [] = []

area_counts ["9998887777";"Malformed-ignored"] = [("999",1)]

let area_counts 1lst =

9 fold_left (fun acc x ->
10 update_count acc (get_area_code x))
11 (1 1st

There are at least 3 bugs present in the lines with line numbers. Find them and fix them in the next page. Each bug should
just require you to rewrite a single line of the program. If a line does not have a number next to it, then that line cannot be
rewritten.

Note: Line is just to help grade, you will not get points just for identifying the line

(a) Error1
Line: Fix:
(b) Error 2
Line: Fix:
(c) Error 3
Line: Fix:

Problem 6: OCaml Typing

Give the type of the function >foo”. If there is a type error, put "ERROR”

let foo x y z = match x with let foo a b =
a > a map (a b) [1;2;3]
[x::[1 -> [z]
l_ -> [7]

[5 pts]

[5 pts]

[5 pts]

[Total 6 pts]

Problem 7: Evaluation

Evaluate the following OCaml expressions. If there is a compilation error, put "ERROR”

let foo £ 1 = let foo =
fold_left (fun a x -> ((f x)::a)) [1 in fun () -> let x = ref "hello" in
foo (fun x -> x * 5) [1;2;3;4;5] fun a -> let res = !x in
X := Ix 7 a; res in

[foo (O " World"; foo () " Everyone"]

[Total 4 pts]

Problem 8: Property Based Testing [Total 9 pts]
Consider the following incorrect £ilter function for a list.

let rec filter f 1lst = match 1lst with
0> 1
|x::xs -> if f x then (f x)::(filter f xs) else filter f xs

Consider the following property p about the £ilter function:
p : filtering a non-empty list with function f and filtering the same list with not £ should result in 2 mutually exclusive lists

Using a correct implementation of £ilter, this property p should hold true for all valid inputs?

Using our implementation of filter, this property p should hold true for all valid inputs?
Suppose | encode this property in OCaml to be used in 0OCaml’s QCheck library as the following:
let prop f 1st = filter f 1lst <> filter (fun x -> not (f x)) 1lst

The above prop function is a valid encoding of the property p.

Problem 9: Error Handling [Total 5 pts]

Match the following error messages with the best possible fix. Each fix must only be used once, so choose the fix that fits
the best.

Error Answer Fix

Exception: Match_failure A | Make sure nested let expressions have a
matching in keyword.

Error: This expression has B | Check to make sure you are using exhaustive

type ’a but an expression was pattern matching

expected of type ’a list

Error: This expression has C | Make sure the guard of an if expression is the

type int but an expression was correct type

expected of type bool

Fatal Error: exception D | Make sure you are using cons and not @

Failure("unimplemented")

Syntax Error E | Make sureyou saved your code before testing

Problem 10: Coding [Total 20 pts]

Restrictions for both coding questions: You are not allowed to use imperative OCaml; you can define recursive helper/helper
functions below the function signatures we provided. You are not allowed to use any List module functions except the ones
already given to you on the cheat sheet. (Function #2 continues on the next page!)

(a) Query [15 pts]
Write a function called huh that takes in a query type and a value. Return Some value if the query is satisfied and None
otherwise.

type ’a query = And of query * query | Not of query | Condition of (’a -> bool)

Examples:

The query q represents all values not > 4 and that are even

let q = And(Not(Condition(fun x -> x > 4)), Condition(fun x -> x mod 2 = 0))
huh q 4 = Some(4)

huh q 2 = Some(2)

huh g 8 = None

(* query -> ’a -> ’a Option *))
let rec huh query value =

(b) Tree [5 pts]
Suppose your above huh function works. Write a function called query_tree which takes in a query and a tree, then returns
all the values that matches the query in a list.

type tree = Node of tree * int * tree | Leaf

Examples:
let q = And(Not(Condition(fun x -> x > 4)), Condition(fun x -> x mod 2 = 0))
let t = Node(Node(Leaf, 1, Leaf), -10, Node(Node(Leaf, 2, Leaf), 8, Leaf))
-10
/ \
1 8
/
2
query_tree q t = [-10;2] (*order does not matter *)

let rec query_tree query t =

Cheat Sheet
OCaml

(* OCaml Function Types *)

’

- 'a -> 'a list -=> ’a list

@ -: 'a list -=> 'a list -> 'a list
(* Map and Fold *) .]))
(* ('a -> 'b) > 'a list > 'b list *) e '*/ -iint -> int -> int
let rec map f | = match | with +., -., *., [|. -: float -> float -> float
[-> 1]
Ix::xs -> (f x)::(map f xs) &&, || -: bool -> bool -> bool
not -: bool -> bool

(* ('a-> 'b-> 'a) > 'a->"'b list > 'a *)
let rec fold_left f a | = match | with

[] > a

[x::xs -> fold_left f (f a x) xs

-: string -> string -> string

=>,>=,<,<=, <> :- 'a -> 'a -> bool

(* (ra -> Ib -> Ib) - ra liSt -> rb -> rb *) (* Imperative OCClml *)
(* Example *)

let rec fold_right f | a = match | with
[1 -> a let d = ref o;;
|x::xs -> f x (fold_right f xs a) :a‘ d : int ref = {contents = o}
=15
Structure of Regex -+ unit = ()
td;;
R — o - int =1
| o
| € (* Types *)
| RR
| RIR (ref) : 'a-> 'a ref
| R”
(:=);; - : 'aref -> 'a-> unit = <fun>
(');; -: 'aref->"a=<fun>

Regex

* zero or more repetitions of the preceding character or group
one or more repetitions of the preceding character or group

? zero or one repetitions of the preceding character or group

. any character

ry|ry ry or rp (eg. a|b means 'a’ or 'b’)

[abc] | match any character in abc

["r] anything except rq (eg. ["abc] is anything but an 'a’,'b’, or ’c’)

[ri-r;] | range specification (eg. [a-z] means any letter in the ASCII range of a-z)

{n} exactly n repetitions of the preceding character or group

{n,} at least n repetitions of the preceding character or group

{m,n} | atleast m and at most n repetitions of the preceding character or group

start of string

S end of string

(r1) capture the pattern ry and store it somewhere (match group in Python)
\d any digit, same as [0-9]

\s any space character like \n, \t, \r, \f, or space

