CMSC330 Spring 2024 Quiz 1

Proctoring TA: Name:
Section Number: uID:
Problem 1: Basics [Total 4 pts]
True
OCaml uses type inference to determine the type of variables @
Functional Programming Languages favor mutable data @

Functional Programming aims to decrease the amount of side effects @

® o0 oL

Functions are expressions in OCaml @

Problem 2: OCaml Typing and Evaluating [Total 6 pts]

Give the type for the following expressions and what they evaluate to. If there is an error, either in evaluation OR typing,
put "ERROR".

(a) [2 pts]

let f x y = match x with

[1 >y Type:
[x::xs -> [x]::[] ;;

f [4] [[6]1] ;; Evaluation:
(b) [2 pts]
let fab-=

if b > a then b Type:

else a < true ;;

f 2.0 false;; Evaluation:

(c) [2 pts]

let rec f g lst = match lst with

[1 -> 11 Type:
[x::xs -> (x, g x)::(f g xs) ;;

f (fun x -> x mod 2 = 1) [1;2;3] ;; Evaluation:




Problem 3: OCaml Expressions [Total 4 pts]

Write an expression that would have the following types.

(a) [2 pts]

’

int list -> 'a -> ’'a -> bool

(b) [2 pts]

('a -> 'b) -> 'a -> 'b -> bool

Problem 4: Coding [Total 6 pts]

Write a function calc that takesa (int * bool) list and returnsa (int * bool), which consists of the sum of the
ints, and the result of AND'ing the bools.

You do NOT have to use map or fold, but their definitions are given if you want to use them.
You can write helper methods. Make sure your function header matches the arguments that calc takes in.

(* Examples let rec map f 1 = match 1 with

calc [(1,true); (2,false)] = (3,false) (1 -> 1l
calc [(3,true); (4,true)] = (7,true) |x::xs -> (f x)::(map f Xs)

*)
let rec fold f a 1 = match 1 with

[l ->a

(* Write your code below for calc lst x*) |x::xs -> fold f (f a x) xs



CMSC330 Spring 2024 Quiz 1

Proctoring TA: Name:
Section Number: uID:
Problem 1: Basics [Total 4 pts]
True False

OCaml does not use type inference to determine the type of variables @
Functional Programming Languages don't favor mutable data @

Functional Programming aims to increase the amount of side effects @

ONONONC

Functions are expressions in OCaml @

Problem 2: OCaml Typing and Evaluating [Total 6 pts]

Give the type for the following expressions and what they evaluate to. If there is an error, either in evaluation OR typing,
put "ERROR".

(a) [2 pts]

let f x = match x with

[1 -> [[31] Type:
[x::xs -> [x]::[] ;;

f [4];; Evaluation:
(b) [2 pts]
let fabcs=

if b > a then ¢ Type:

else a < true ;;

f true false (fun x y -> x > vy);; Evaluation:
(c) [2 pts]
let rec f g lst = match 1st with

[1 -> 11 Type:

[x::xs -> (x, g x)::(f g xs) ;;

f (fun x -> x mod 2 = 1) [1;2;3] ;; Evaluation:




Problem 3: OCaml Expressions [Total 4 pts]

Write an expression that would have the following types.

(a) [2 pts]

float -> float -> bool -> float list

(b) [2 pts]

’

(int * 'a) -> (bool -> 'a) -> 'a

Problem 4: Coding [Total 6 pts]

Write a function calc that takesa (int * bool) list and returnsa (int * bool), which consists of the sum of the
ints, and the result of AND'ing the bools.

You do NOT have to use map or fold, but their definitions are given if you want to use them.
You can write helper methods. Make sure your function header matches the arguments that calc takes in.

(* Examples let rec map f 1 = match 1 with

calc [(1,true); (2,false)] = (3,false) (1 -> 1l
calc [(3,true); (4,true)] = (7,true) |x::xs -> (f x)::(map f Xs)

*)
let rec fold f a 1 = match 1 with

[l ->a

(* Write your code below for calc lst x*) |x::xs -> fold f (f a x) xs



CMSC330 Spring 2024 Quiz 1

Proctoring TA: Name:
Section Number: uID:
Problem 1: Basics [Total 4 pts]
True
Functions are not expressions in OCaml @
OCaml uses type inference to determine the type of variables @

Functional Programming aims to decrease the amount of side effects @

CNCHNCNGCH!

Functional Programming Languages not favor mutable data @

Problem 2: OCaml Typing and Evaluating [Total 6 pts]

Give the type for the following expressions and what they evaluate to. If there is an error, either in evaluation OR typing,
put "ERROR".

(a) [2 pts]

let f x y = match x with

[1 >y Type:
[x::xs -> [x]::[] ;;

f [(1,2);(3,4)] [[(6,7)]1] ;; Evaluation:

(b) [2 pts]

let f ab-=
if b > a then ("hello" < "bye") Type:
else a < true ;;

f (fun x -> x < 1) false;; Evaluation:
(c) [2 pts]
let rec f g lst = match lst with

[1 ->11 Type:

[x::xs -> (x, g x)::(f g xs) ;;

f (fun x -> x mod 2 = 1) [1;2;3] ;; Evaluation:




Problem 3: OCaml Expressions [Total 4 pts]

Write an expression that would have the following types.

(a) [2 pts]
'a -> 'b list -> 'a -> 'a x 'a
(b) [2 pts]

’

(int * 'a) -> (bool -> 'a) -> 'a

Problem 4: Coding [Total 6 pts]

Write a function calc that takesa (int * bool) list and returnsa (int * bool), which consists of the sum of the
ints, and the result of AND'ing the bools.

You do NOT have to use map or fold, but their definitions are given if you want to use them.
You can write helper methods. Make sure your function header matches the arguments that calc takes in.
(* Examples let rec map f 1 = match 1 with
calc [(1,true); (2,false)] = (3,false) (1 ->11
calc [(3,true); (4,true)] = (7,true) |x::xs -> (f x)::(map f xs)
*)
let rec fold f a 1 = match 1 with
[l ->a

(* Write your code below for calc lst x*) |x::xs -> fold f (f a x) xs



CMSC330 Spring 2024 Quiz 1

Proctoring TA: Name:
Section Number: uID:
Problem 1: Basics [Total 4 pts]
True False
Functions are expressions in OCaml @

Functional Programming aims to decrease the amount of side effects @

ONONORC)

OCaml uses type inference to determine the type of variables @
Functional Programming Languages favor mutable data @
Problem 2: OCaml Typing and Evaluating [Total 6 pts]

Give the type for the following expressions and what they evaluate to. If there is an error, either in evaluation OR typing,
put "ERROR".

? [2 pts]
let f x y = match x with

[1 >y e

|_::ixs -> [2]::[] ype:

|4::xs -> [4]::[1;;
f [4] [[6]1] ;; Evaluation:
Ny [2 pts]
let fabs=

if b > a then (1.3 < 4.6) Type:

else a < true ;;

f true 1.3;; Evaluation:
(c) [2 pts]
let rec f g lst = match 1st with

[1 -> 11 Type:

[x::xs -> (x, g x)::(f g xs) ;;

f (fun x -> x mod 2 = 1) [1;2;3] ;; Evaluation:




Problem 3: OCaml Expressions [Total 4 pts]

Write an expression that would have the following types.

(a) [2 pts]

int list -> int -> bool list

(b) [2 pts]

(int -> ’a) -> int -> int x 'a list

Problem 4: Coding [Total 6 pts]

Write a function calc that takesa (int * bool) list and returnsa (int * bool), which consists of the sum of the
ints, and the result of AND'ing the bools.

You do NOT have to use map or fold, but their definitions are given if you want to use them.
You can write helper methods. Make sure your function header matches the arguments that calc takes in.

(* Examples let rec map f 1 = match 1 with

calc [(1,true); (2,false)] = (3,false) (1 -> 1l
calc [(3,true); (4,true)] = (7,true) |x::xs -> (f x)::(map f Xs)

*)
let rec fold f a 1 = match 1 with

[l ->a

(* Write your code below for calc lst x*) |x::xs -> fold f (f a x) xs



