
CMSC330 Spring 2024 Q
.
uiz 4

Proctoring TA: Name:

Section Number: UID:

Problem 1: Basics [Total 4 pts]

True False
There are some data structures in Rust which will not deallocate using the Reference Counting T F
Garbage Collection Strategy

Rust’s Type System prevents Double Frees unless the unsafe keyword is used T F

It is theoretically possible to implement project 3 (NFA to DFA) in Lambda Calculus T F

(λx .y ) ((λx .xx ) (λz .zz )) has a beta normal form under eager evaluation T F

Problem 2: Lambda Calculus - Variables [Total 2 pts]

Underline the free variables and circle the bound variables in the expression below.

Note: Do not mark any of the lambda parameter variables.

a (λa . λb . b λa . a) (λc . d ) c

Problem 3: Lambda Calculus - Alpha Equivalence [Total 2 pts]

Which lambda calculus expressions are alpha equivalent to (λa . a) ((λb . c λx . x ) a b c)? Circle all that apply.

A (λa . a) ((λa . c λa . a) a b c) B (c λa . a) c

C (λc . a) ((λb . c λc . c) a b c) D (λf . f ) ((λc . c λg . g ) a b c)

1



Problem 4: Lambda Calculus - Reduction [Total 4 pts]

Reduce (λa .(λb .(λc .c c)b)a)d to beta normal form and show each step.

Problem 5: Rust Ownership [Total 8 pts]

fn main(){
{
let a = String::from("hello");
let b = f1(a);
// Mark 1
let c = f2(&b);
// Mark 2

}
// Mark 3

}

fn f1(s: String) -> String{
println!("{}",s.len());
// Mark 4
s

}

fn f2(s: &str)-> i32{
s.len() as i32

}

If there is no owner (because the value has been
dropped) put "None". Assume that we are asking
about ownership during execution.

Who is the owner of the value "hello" at Mark 1?

Who is the owner of the value "hello" at Mark 2?

Who is the owner of the value "hello" at Mark 3?

Who is the owner of the value "hello" at Mark 4?

2


