

[6 pts]

CMSC330 Spring 2024 Quiz 3

Proctoring TA:	Name:	
Section Number:	VID:	-
Problem 1: Context Free Grammars - Derivat	tions	[Total 8 pts]
Consider the following Grammar:		
S -> if S then S T U T -> else S ϵ U -> 'hello' 'bye' true false		
(a) Is this an ambiguous grammar?		[2 pts]
(A) Yes	BNO	

(b) Derive "if if true then 'hello' else 'bye' then false"

Problem 2: Context Free Grammars - Creation

(a) Design a CFG that represents the same set of strings as the regular expression: (d|e)*f+

[Total 4 pts] [4 pts]

Problem 3: Lexing Parsing and Evaluating

Given the following CFG, and assuming the **Ocaml** type system, at what stage of language processing would each expression **fail**? Mark **'Valid'** if the expression would be accepted by the grammar and evaluate properly. Assume the only symbols allowed are those found in the grammar.

 $E \rightarrow M$ and E|M or E|M $M \rightarrow N + M|N - M|N$ $N \rightarrow 1|2|3|4|$ true | false | (E)

1 + 2 - (true and false)	Lexer	Parser P	Evaluator E	Valid V
{2}	L	P	E	V
3 * 1 - 2	L	P	E	V
2 and 5	L	P	E	V
false	L	P	E	V
true and (false)	L	P	E	V
(1) + (4)	L	P	E	V
(({2)})	L	P	E	V

[Total 8 pts]