
CMSC330 Spring 2024 Quiz 2 Solutions
Problem 1: Basics [Total 4 pts]

True False
Regular expressions can be used to parse text out of strings T F

When evaluating an expression, the order matters when there are side effects T F

The concept of fold is limited to lists T F

Map cannot be written in terms of fold_left T F

The implementation of fold_left is limited to lists T F

Regular Expressions cannot be used to parse text out of strings T F

Map can be written in terms of fold_right T F

The concept of fold is not limited to lists T F

Map cannot be written in terms of fold_right T F

Map can be written in terms of fold_left T F

Problem 2: Data and Map [Total 8 pts]

Consider the following Variant from project 2:

type ’a tree = Leaf|BiNode of ’a tree * ’a * ’a tree (* left subtree, value, right subtree *)

Suppose we want to make a tree that looks like:

v1. [1] v2. [] v3. [6;7] v4. [9]
/ \ / \ / \ / \

[4;5] [] [0] [2;3] [] [8] [8;7] []

(a) How would you create a variable called t that is bound to a int list tree that corresponds to the above tree? [3 pts]

v1 - BiNode(BiNode(Leaf, [4; 5], Leaf), [1], BiNode(Leaf, [], Leaf))

v2 - BiNode(BiNode(Leaf, [0], Leaf), [], BiNode(Leaf, [2;3], Leaf))

v3 - BiNode(BiNode(Leaf, [], Leaf), [6; 7], BiNode(Leaf, [8], Leaf))

v4 - BiNode(BiNode(Leaf, [8;7], Leaf), [9], BiNode(Leaf, [], Leaf))

1

(b) Tree Map [5 pts]

Suppose we have a function called tree map. It works like map, but will map a ’a tree to ’b tree.

val tree_map f t: (’a -> ’b) -> ’a tree -> ’b tree
val map f l: (’a -> ’b) -> ’a list -> ’b list

v1. Using only tree_map and map, write a function that will add 5 to every element of the lists within a int list tree.

let addfive ltree =
tree_map (fun a_list -> map (fun a -> a + 5) a_list) ltree

v2. Using only tree_map and map, write a function that will square every element of the lists within a int list tree.

let square ltree =
tree_map (fun a_list -> map (fun a -> a * a) a_list) ltree

v3. Using only tree_map and map, write a function that will subtract 3 from every element of the lists within a int list
tree.

let sub3 ltree =
tree_map (fun a_list -> map (fun a -> a - 3) a_list) ltree

v4. Using only tree_map and map, write a function that will divide by 4 from every element of the lists within a int list
tree.

let div4 ltree =
tree_map (fun a_list -> map (fun a -> a / 4) a_list) ltree

2

Problem 3: Regex [Total 8 pts]

Write a regex that describes a subset of valid umd emails. Emails take the form of a user’s directory ID followed by the @
symbol, followed by one of the following domain names: cs.umd.edu, terpmail.umd.edu, or just umd.edu.

(a) Email Addresses [4 pts]

v1.

• A user’s directory ID can be length 0 to length 8 consisting of only alphanumeric (both upper and lowercase) charac-
ters.

• A user’s directory ID may not start with a digit.

^([a-zA-Z][a-zA-Z0-9]{0,7})?@((cs\.)|(terpmail\.))?umd\.edu$

v2.

• A user’s directory ID can be length 2 to length 10 consisting of only alphanumeric (both upper and lowercase) char-
acters.

• A user’s directory ID may not start with a uppercase letter.

^[a-z0-9][a-zA-Z0-9]{1,9}@((cs\.)|(terpmail\.))?umd\.edu$

v3.

• A user’s directory ID can be length 1 to length 6 consisting of only alphanumeric (both upper and lowercase) characters.

• A user’s directory ID may not start with a lowercase letter.

^[A-Z0-9][a-zA-Z0-9]{0,5}@((cs\.)|(terpmail\.))?umd\.edu$

v4.

• A user’s directory ID can be length 0 to length 10 consisting of only alphanumeric (both upper and lowercase) char-
acters.

• A user’s directory ID may not start with a an upper or lowercase letter.

^([0-9][a-zA-Z0-9]{0,9})?@((cs\.)|(terpmail\.))?umd\.edu$

3

(b) Assuming a full match, which strings are accepted by the following regex? Select all that apply [2 pts]

v1.

ˆ[Cliff|Anwar]+ is (great|the best)?$

A Cliff is sad B Anwar is the best C cliff is great

D winwrar is E flan is the best F the best

v2.

ˆ[Cliff|Anwar]+ (is great|the best)?$

A Cliff is sad B Anwar is the best C cliff is great

D winwrar the best E flan F the best

v3.

ˆ([Cliff|Anwar]+ is great|the best)?$

A Cliff is sad B Anwar is the best C cliff is great

D winwrar the best E flan is great F the best

v4.

ˆ[Cliff|Anwar]+ (is|the) (great|best)?$

A Cliff is sad B Anwar is the best C cliff is great

D winwrar the best E flan is great F the best

(c) Which of the following regular expressions is not equivalent to the others? [2 pts]

v1.

A [abc]+def?(g|hi) B (a|b|c)[abc]*def?g|(a|b|c)[abc]*def?hi

C (abc)+def(g|hi)|(abc)(abc)*de(g|hi) D [abc]+de((g|hi)|fg|fhi)

E They are all the same

(abc)+ is different from [abc]+ or (a|b|c)[abc]*.

v2.

A [abc]+def?(g|h)i B (a|b|c)[abc]*def?gi|(a|b|c)[abc]*def?hi

C [abc]+def(g|h)i|[abc]+de(g|h)i D [abc]+de((g|hi)|fg|fhi)

E They are all the same

(g|hi)|fg|fhi doesn’t account for fgi case.

4

v3.

A [abc]+def?(g|hi) B (a|b|c)[abc]*def?g|(a|b|c)[abc]*def?hi

C [abc]+def(g|hi)|[abc]+de(g|hi) D [abc]+de((g|hi)|fg|fhi)

E They are all the same

This might look similar to version 2, but we are looking for g|hi this time but v2 is looking for (g|h)i.

v4.

A [abc]+def?(g|hi) B (a|b|c)[abc]*def?g|(a|b|c)[abc]*dehi

C [abc]+def(g|hi)|[abc]+de(g|hi) D [abc]+de((g|hi)|fg|fhi)

E They are all the same

Doesn’t account for defhi as the second | case is only dehi.

5

