
CMSC330 - Organization of Programming Languages
Spring 2024 - Final

CMSC330 Course Staff
University of Maryland

Department of Computer Science

Name:

UID:

I pledge on my honor that I have not given or received any unauthorized assistance on this assignment/examination

Signature:

Ground Rules

• Please write legibly. If we cannot read your answer you will not receive credit.
• You may use anything on the accompanying reference sheet anywhere on this exam
• Please remove the reference sheet from the exam
• The back of the reference sheet has some scratch space on it. If you use it, you must turn in your scratch work
• You may not leave the room or hand in your exam within the last 10 minutes of the exam
• If anything is unclear, ask a proctor. If you are still confused, write down your assumptions in the margin

Question Points
P1. 10
P2. 10
P3. 15
P4. 5
P5. 6
P6. 6
P7. 6
P8. 6
P9. 10
P10. 8
P11. 18

Total 100

1

Problem 1: Concepts [Total 10 pts]

(a) True/False [6 pts]
True False

In Ocaml, an anonymous function cannot make a recursive call to itself T F

(fun x -> x + 1) is alpha-equivalent to (fun y -> y + 1) T F

All statements are expressions, but not all expressions are statements T F

A Turing machine can compute everything a Finite State Machine could compute T F

Security is more than just fixing bugs T F

Soundness implies completeness T F

(b) Garbage Collection [2 pts]

Which garbage collection algorithm can successfully clean up a cyclical linked list data structure? Select all that apply.

A Reference Counting

B Mark and Sweep

C Stop and Copy

D Any garbage collection algorithm can clean it.

E None of the above

(c) Type Safe [2 pts]

Given the Following Grammar, Type Rules, and Operational Semantics, is Math-ew a type safe Language?

M -> sq M | A

A -> !A | T

T -> true | false | H

H -> 0 | 1 | 2 | ...

Note: H = Î

G ⊢ n : i nt

G ⊢ b : bool

G ⊢ e : i nt sq = (i nt , i nt)
G ⊢ sq e : i nt

G ⊢ e : bool ! = (bool , bool)
G ⊢!e : bool

A; n ⇒ n

A; b ⇒ b

A; e ⇒ v1 v2 i s v1 ∗ v1
A; sq e ⇒ v2

G ⊢ e ⇒ v1 v2 = !v1
A; !e ⇒ v2

Y Yes N No

2

Problem 2: Regex [Total 10 pts]

If you run ls -lh on the command line, you get back a list of files in the current directory. Suppose ls -lh returned:

drwxrwxrwx owner1 group1 folder1

-r-xrw-r-- clyffb a330ta emails.txt

-r-------- anwarm profs Grades.csv

---------- owner3 none passWORDS.bin

Write a regex that describes each part:

(a) Directory and Permissions [4 pts]
Each line starts with either d (for directory) or - (dash if it is not a directory). It is then followed by read (r), write (w),
and execute (x) to denote the permissions of the 3 groups: the owner, group and others. The order will always be rwx
replacing any letter with a - if that group does not have that permissions. For example: drwxr-x--x means that this is
a directory for which the owner has all three permissions, the group can only read and execute and others can only execute.

A =
(b) Name [2 pts]
Names begin with a lowercase character followed by zero ormore lowercase or numeric characters. Write a regex that would
be able to process a name that fits these specifications (you only need to write a regex to match one name, not two).

B =
(c) File Name [3 pts]
File names are at least one character long, and can be any alphanumeric character, along with special characters of dashes
(-) and underscores().

C =
(d) Full Line [1 pts]
Each part is separated by 1 or more whitespace characters between. Follow the syntax in the example lines above and use
the above parts A, B, C to fill in the blanks to write a regex that parses the lines outputted by ls -lh. Write one item (either
A, B, C or the appropriate regex) in each blank so that as a whole the regex matches a full line. (Ex: B a+ C, etc.)

ˆ $

3

Problem 3: FSM [Total 15 pts]

(a) Convert the below NFA to a DFA. [10 pts]
Draw a box around your final answer.

0

1

2

3

Scratch Space:

ϵa

b

b

a ϵ

ϵ

(b) Write a CFG that describes strings accepted by the NFA above. [5 pts]

4

Problem 4: Typing [Total 5 pts]

Give the type of the following expressions. If there is a type error, put ”ERROR”

(* Ocaml *)

fun x ->

let (a,b) = x in

fun y ->

let a = (a+1, b > true) in

(a::y)

// Rust

{

let a = if false {

true > false;

};

let b = true;

(a, b)

}

Problem 5: Evaluation [Total 6 pts]

Evaluate the following expressions. It there is a compilation error, put ”ERROR”

(* Ocaml *)

let rec f x = match x with

[] -> 3

|x::xs -> List.fold_left x (f xs) [1;2;3] in

f [(fun a b -> a * b)]

// Rust

fn f1(x: i32, y: i32) -> i32 {

x + y

}

fn f2(x: i32, y: i32) -> i32 {

x * y

}

...

{

let mut x = vec![3, 2, 5];

let mut a = true;

for i in x.iter_mut() {

if a {

*i = f1(*i, *i);

a = false;

} else {

*i = f2(*i, *i);

a = true;

}

}

x

};

5

Problem 6: Property Based Testing [Total 6 pts]

Consider the following functions and type definitions:

type tree = Node of tree * int * tree | Leaf of int

(* this function is supposed to mirror a binary tree *)

(* it may or may not have a bug *)

let rec mirror tree = match tree with

Leaf(x) -> Leaf(x)

|Node(l,v,r) -> Node(mirror r,v, mirror l)

(* this function is supposed to count the number of nodes in a binary tree *)

(* it may or may not have a bug *)

let rec count tree = match tree with

Leaf(x) -> 1

|Node(l,v,r) -> count l + v

Below are descriptions of properties being tested and an attempted implementation of each property for the qcheck testing
framework. For each property, indicate if the property is valid. If the property is valid, indicate if the property will catch the
bugs in the above code even if the function does not correctly represent the property. If the property is invalid, put NA to
catch bugs. Then indicate if the function provided correctly represents the property not considering the bugs in the above
code.

(a) Property 1 [3 pts]
Property: Mirroring the tree should not result in the initial tree
Property as a Function: fun tree -> mirror tree <> tree

Valid property: Y N Property would catch above bugs: Y N na Valid Property Function: Y N

(b) Property 2 [3 pts]
Property: Mirroring a tree should not change the number of nodes
Property as a Function: fun tree -> count (mirror tree) = count tree

Valid property: Y N Property would catch above bugs: Y N na Valid Property Function: Y N

6

Problem 7: Interpreters [Total 6 pts]

Given the following CFG, and assuming the Ocaml type system and semantics, at what stage of language processing would
each expression fail? Mark ‘Valid’ if the expression would be accepted by the grammar and evaluate properly. Assume the
only symbols allowed are those found in the grammar. Choose only one choice for each expression.

Grammar:

M → M E + | M E − | E
E → O E / | O E ∗ | O
O → WO > |WO < |W
W → n | b
Note: n ∈ Ú, b ∈ {t r ue, f al se}
The opsem for this grammar is given below:

OpSem:

A; n ⇒ n A; b ⇒ b

A; e1 ⇒ v1 A; e2 ⇒ v2 v3 = v1 + v2
A; e1 e2+ ⇒ v3

A; e1 ⇒ v1 A; e2 ⇒ v2 v3 = v1 − v2
A; e1 e2− ⇒ v3

A; e1 ⇒ v1 A; e2 ⇒ v2 v3 = v1/v2
A; e1 e2 /⇒ v3

A; e1 ⇒ v1 A; e2 ⇒ v2 v3 = v1 ∗ v2
A; e1 e2 ∗ ⇒ v3

A; e1 ⇒ v1 A; e2 ⇒ v2 v3 = v1 > v2

A; e1e2 >⇒ v3

A; e1 ⇒ v1 A; e2 ⇒ v2 v3 = v1 < v2

A; e1 e2 <⇒ v3

Lexer Parser Evaluator Valid
1 3 * 5 * 6 + L P E V

true false not L P E V

+ 1 \ 3 4 L P E V

7

Problem 8: Operational Semantics [Total 6 pts]

x ⇒ v1 y ⇒ v2 v3 is v1&&v2
x&&y ⇒ v3

If Ocaml uses the above opsem rule, what would the following Ocaml expression print out?

(let = print string "a" in false) && (let = print string "b" in true)

y ⇒ v1 x ⇒ v2 v3 is v1&&v2
x&&y ⇒ v3

If Ocaml instead uses the above opsem rule, what would the following Ocaml expression print out?

(let = print string "a" in false) && (let = print string "b" in true)

x ⇒ v1 y ⇒ v2 v3 is v1&&v2
x&&y ⇒ v3

If Ocaml instead uses the above opsem rule, what would the following Ocaml expression print out?

(let = print string "a" in true) && (let = print string "b" in false)

8

Problem 9: Lambda Calculus [Total 10 pts]

(a) Reduce [6 pts]
Reduce the following lambda expression. Show every step.

((λx . (λy . y x)) y) (λx . x b)

(b) Free Variables:
[2 pts]

Circle the free variables in the expression below:

(λx .(λx .x x) x) x (λy .y f) a
(c) Alpha Equivalence: [2 pts]

Which of the following are alpha equivalent to the expression above, (λx .(λx .x x) x) x (λy .y f) a ? Select all that apply.

A (λx .(λb .b b) b) x (λw .w f) a
B (λw .(λb .b b)w)w (λc .c f) a
C (λy .(λd .d d) y) x (a f)
D (λw .(λz .z z)w) x (λy .y f) a

9

Problem 10: Ownership and Lifetimes [Total 8 pts]

1 fn main(){

2 let x = 4;

3 let y = x;

4 println!("{x},{y}");

5 }

Does the code compile? Y Yes N No

If no, explain why not in one sentence:

1 fn main(){

2 let x = String::from("Hello");

3 let y = &mut x;

4 println!("{y}");

5 }

Does the code compile? Y Yes N No

If no, explain why not in one sentence:

1 fn main(){

2 let mut x = String::from("Hello");

3 let y = &mut x;

4 x.push_str(" world");

5 println!("{x},{y}");

6 }

Does the code compile? Y Yes N No

If no, explain why not in one sentence:

1 fn function<’a>(s1:&’a String,

2 s2:&’a String,

3 f:bool)->usize{

4 if f {s1.len()} else{s2.len()}

5 }

6 fn main(){

7 let a = String::from("hello");

8 let b = a.clone();

9 let c = function(&b,&a,true);

10 println!("{a} has length {c}");

11 }

Does the code compile? Y Yes N No

If no, explain why not in one sentence:

10

Problem 11: Coding [Total 18 pts]

(a) Flatten: [8 pts]
Write a function that takes in a Tree and returns a linked list of the tree in pre-order. You may make helper functions.

type tree = TNode of tree * int * tree | Leaf of int

type llist = LNode of int * llist | Tail of int

(* ex: flatten TNode(TNode(TNode(Leaf, 2, Leaf), 5, Leaf), 3, TNode(Leaf, 4, Leaf))

= LNode(3, LNode(5, LNode(2, LNode(4, Tail)))) *)

let rec flatten tree =

(b) Reachable: [10 pts]
Given a graph and a starting node, return all the reachable nodes as a list (order does not matter). You may use the union
function as set union (ex: union [1; 2; 3] [2; 3; 4] = [1; 2; 3; 4])

type node = string * int (* name of node and its value *)

type edge = node * node (* bidirectional graph *)

type graph = (node list) * (edge list)

(* ex: let nodes = [("a", 1), ("b", 2), ("c", 4), ("d", 3)] in

let edges = [(("a", 1), ("b", 2)), (("b", 2), ("d", 3)), (("b", 2), ("c", 4))] in

reachable (nodes, edges) ("a", 1) = [("b", 2), ("c", 4), ("d", 3)] *)

let rec reachable g start =

11

Problem 12: Extra Credit [Total 2 pts]

(a) Staff Stalking [1 pts]
What is your discussion TA’s name and what is your discussion number?

(b) Colon Parenthesis [1 pts]
Write a poem!

12

Cheat Sheet
OCaml
(* Map and Fold *)
(* (’ a −> ’ b) −> ’ a l i s t −> ’ b l i s t *)
l e t rec map f l = match l with

[] −> []
| x : : xs −> (f x) : : (map f xs)

(* (’ a −> ’ b −> ’ a) −> ’ a −> ’ b l i s t −> ’ a *)
l e t rec f o l d l e f t f a l = match l with

[] −> a
| x : : xs −> f o l d l e f t f (f a x) xs

(* (’ a −> ’ b −> ’ b) −> ’ a l i s t −> ’ b −> ’ b *)
l e t rec f o l d r i g h t f l a = match l with

[] −> a
| x : : xs −> f x (f o l d r i g h t f xs a)

(* Regex in OCaml *)
Re . Posix . re : s t r i n g −> regex
Re . compile : regex −> compiled regex

Re . exec : compiled regex −> s t r i n g −> group
Re . execp : compiled regex −> s t r i n g −> bool
Re . exec opt : compiled regex −> s t r i n g −> group option

Re . matches : compiled regex −> s t r i n g −> s t r i n g l i s t

Re . Group . get : group −> i n t −> s t r i n g
Re . Group . get opt : group −> i n t −> s t r i n g option

(* OCaml Function Types *)
: : − : ’ a −> ’ a l i s t −> ’ a l i s t

@ − : ’ a l i s t −> ’ a l i s t −> ’ a l i s t

+ , − , * , / − : i n t −> i n t −> i n t
+ . , − . , * . , / . − : f l o a t −> f l o a t −> f l o a t

&&, | | − : bool −> bool −> bool
not − : bool −> bool

ˆ − : s t r i n g −> s t r i n g −> s t r i n g

=> ,> ,= ,< ,<= : − ’ a −> ’ a −> bool

Structure of Regex
R → ∅

| σ
| ϵ
| RR
| R |R
| R ∗

Regex
* zero or more repetitions of the preceding character or group
+ one or more repetitions of the preceding character or group
? zero or one repetitions of the preceding character or group
. any character
r1 |r2 r1 or r2 (eg. a|b means ’a’ or ’b’)
[abc] match any character in abc

[ˆr1] anything except r1 (eg. [ˆabc] is anything but an ’a’, ’b’, or ’c’)
[r1-r2] range specification (eg. [a-z] means any letter in the ASCII range of a-z)
{n} exactly n repetitions of the preceding character or group
{n,} at least n repetitions of the preceding character or group
{m,n} at least m and at most n repetitions of the preceding character or group
ˆ start of string
$ end of string
(r1) capture the pattern r1 and store it somewhere (match group in Python)
\d any digit, same as [0-9]
\s any space character like \n, \t, \r, \f, or space

13

NFA to DFA Algorithm (Subset Construction Algorithm)
NFA (input): (Σ,Q , q0, Fn , δ), DFA (output): (Σ, R , r0, Fd , δn)

R ← {}
r0 ← ϵ − closure(σ, q0)
while \ an unmarked state r ∈ R do

mark r
for all a ∈ Σ do

E ← move(σ, r , a)
e ← ϵ − closure(σ, E)
if e < R then

R ← R ∪ {e}
end if
σn ← σn ∪ {r , a, e}

end for
end while
Fd ← {r | \s ∈ r with s ∈ Fn }

Rust
// Vectors
l e t vec = Vec : : new () ; // makes a new vector
l e t vec1 = vec ! [1 , 2 , 3]

vec . push (ele) ; // Pushes the element ’ ele ’
// to end of the vector ’ vec ’

// S t r i n g s
l e t s t r i n g = S t r i n g : : from (” Hello ”) ;

s t r i n g . push str (& s t r) ; // appends the s t r
// to s t r i n g

vec . t o i t e r () ; // returns an i t e r a t o r for vec

s t r i n g . chars () // returns an i t e r a t o r of chars
// over the a s t r i n g

i t e r . rev () ; // reverses an i t e r a t o r s d i r e c t i o n

i t e r . next () ; // returns an Option of the next
// item in the i t e r a t o r .

st ruct Bui ld ing{ // example of st ruct
name : Str ing ,
f l o o r s : i32 ,
locat ionx : f32 ,
locat iony : f32 ,

}

enum Option<T>{ Some(T) ; None } //enum Option type
option . unwrap () ; // returns the item in an Option or

// panics i f None

14

