
CMSC330 - Organization of Programming Languages
Spring 2024 - Exam 2

CMSC330 Course Staff
University of Maryland

Department of Computer Science

Name:

UID:

I pledge on my honor that I have not given or received any unauthorized assistance on this assignment/examination

Signature:

Ground Rules

• Please write legibly. If we cannot read your answer you will not receive credit.
• You may use anything on the accompanying reference sheet anywhere on this exam
• Please remove the reference sheet from the exam
• The back of the reference sheet has some scratch space on it. If you use it, you must turn in your scratch work
• You may not leave the room or hand in your exam within the last 10 minutes of the exam
• If anything is unclear, ask a proctor. If you are still confused, write down your assumptions in the margin

Question Points
P1 10
P2. 6
P3. 8
P4. 14
P5. 12
P6. 14
P7. 15
P8. 16
P9. 5

Total 100

1

Problem 1: Language Concepts [Total 10 pts]

True False
Context Free Grammars can describe strings that contain an arbitrary number of balanced parentheses T F

The lexing phase of an interpreter checks the grammar of the input. T F

Type checking is a separate process from evaluation T F

A language that uses dynamic typing will have type errors during runtime and not compile time T F

Property based testing is intended to be a complete replacement to unit testing T F

Operational semantics can be used to prove the correctness of a program T F

Every language uses the same typing rules. T F

Ocaml is a statically typed language T F

If a language is well-defined, it is also well-typed T F

Context Free Grammars can describe all regular expressions T F

Problem 2: Context Free Grammars - Acceptance [Total 6 pts]

Which of the following strings can be derived
using CFG below?

E → M + E | M − E | M
M → N > M | N < M | N
N → n | b | (E)

Note: n ∈ Ú, b ∈ {t r ue, f al se}

A 1 3 7 B (((6 - 7)))

C true > false D true < (6) + 7

E ((false + true) > (0 - 0)) F () > true

Problem 3: Context Free Grammars - Derivations [Total 8 pts]

E → M + E | M − E | M
M → N > M | N < M | N
N → n | b | (E)
Note: n ∈ Ú, b ∈ {t r ue, f al se}

Using only a left-most derivation, and the above grammar, derive the string ”false > (true + 7)” (do not draw a tree).

2

Problem 4: Context Free Grammars - Creation [Total 14 pts]

Design a Context Free Grammar using the alphabet {a,b}.
• Accepted strings must be of length 0 or more
• Accepted strings must contain an equal number of a’s and b’s
• You must accept strings with a’s and b’s in any order (abbabbaa)

Problem 5: Lexing Parsing and Evaluating [Total 12 pts]

Given the following CFG, and assuming the Ocaml type system and semantics, at what stage of language processing would
each expression fail? Mark ‘Valid’ if the expression would be accepted by the grammar and evaluate properly. Assume the
only symbols allowed are those found in the grammar. Choose only one choice for each expression.
Grammar:

E → M + E | M − E | M
M → N > M | N < M | N
N → n | b | (E)

Note: n ∈ Ú, b ∈ {t r ue, f al se}

Lexer Parser Evaluator Valid
let x = 4 in 5 L P E V

(true) - false > 8 L P E V

8 * 5 - 15 L P E V

-1 - -10 L P E V

(((((false))))) L P E V

1.4 > 4 L P E V

3

Problem 6: Coding and Debugging [Total 14 pts]

Recall the interpreter code done in discussion/project 4/lecture. Debug the following code used to parse the grammar.
There a variety of type and logic errors. You only need to identify (1) type error and two (2) logic bugs. For the logic bugs, we
provide an input that returns the incorrect value. Things that would cause warnings are not bugs in this case.

Grammar:

E -> M + E | M - E | M

M -> N > M | N < M | N

N -> n | b | (E)

(* n is any int, and b is any bool *)

type token = Tok_Plus | Tok_Minus | Tok_LT | Tok_GT | Tok_LParen | Tok_RParen

| Int of int | Boolean of bool

type ast = Add of ast * ast | Sub of ast * ast

| LT of ast * ast | GT of ast * ast | Num of int | Bool of bool

let match_token toks tok = match toks with

[] -> raise (Failure("Error"))

|h::t when h = tok -> t

|h::_ -> raise (Failure("Error"))

let lookahead toks = match toks with

h::t -> h

|_ -> raise (Failure("Error"))

Parser Code:

1 let rec parse toks =

2 let (toks, tree) = parse_E toks in

3 if toks = [] then tree else raise (Failure("Nope"))

4 and parse_E toks = let (toks,tree1) = parse_E toks in match lookahead toks with

5 Tok_Plus -> let t = match_token toks Tok_Plus in

6 let (toks,tree2) = parse_E t in (toks,Add(tree1,tree2))

7 |Tok_Minus -> let t = match_token toks Tok_Minus in

8 let (toks,tree2) = parse_E t in (toks,Sub(tree1,tree2))

9 | _ -> (toks,tree1)

10 and parse_M toks = let (toks,tree1) = parse_P toks in match toks with

11 Tok_LT -> let t = match_token toks Tok_LT in

12 let (toks,tree2) = parse_M t in (toks,LT(tree1,tree2))

13 |Tok_GT -> let t = match_token toks Tok_GT in

14 let (toks,tree2) = parse_M t in (toks,GT(tree1,tree2))

15 | _ -> (toks,tree1)

16 and parse_P toks = match lookahead toks with

17 Int(x) -> Num(x)

18 |Boolean(x) -> Bool(x)

19 |Tok_LParen -> let t = match_token toks Tok_LParen in

20 let (toks,tree) = parse_E t in (match t with

21 Tok_RParen::t -> t,tree

22 |_ -> raise (Failure("Nope")))

Incorrect input:

(parse [Boolean(false); Tok_LT; Tok_LParen; Int(5); Tok_RParen])

4

(a) Type Error 1 [4 pts]

Line: Fix:

(b) Logic Error 1 [5 pts]

Line: Fix:

(c) Logic Error 2 [5 pts]

Line: Fix:

Problem 7: Property Based Testing [Total 15 pts]

Consider the following functions and type definitions:

type transition = (int * char option * int)

type nfa = {alphabet: char list; Qs: int list; q0: int; fs: int list; delta: transition list}

let rec e_closure nfa state =

fold_left (fun a (s,c,d) -> if c = None then d::a else a) [state] nfa.delta

let rec move nfa state symbol =

fold_left (fun a (s,c,d) -> if c = symbol && s = state then d::a else a) [] nfa.delta

Below is a description of the property being tested and its attempted implementation. Please indicate if the function does
in fact test the property, and if the property is valid to test. If the property is valid, indicate if the property will catch the
bugs in the above code regardless of the implementation. If the property is invalid, put NA to catch bugs

(a) Property 1 [5 pts]
Property: E-closure should always have at least one element
Implementation: fun nfa state -> List.len(e_closure nfa state) > 0

Valid implementation: Y N Valid property: Y N Would catch bugs: Y N na

(b) Property 2 [5 pts]
Property: E-closure upon a state should always have that state in the result
Implementation: fun nfa state -> List.mem state (e_closure nfa state)

Note: List.mem x lst returns true if x is an element of lst

Valid implementation: Y N Valid property: Y N Would catch bugs: Y N na

(c) Property 3 [5 pts]
Property: Move upon a state with Epsilon should result in the same as the eclsoure of that state
Implementation: fun nfa state -> move nfa state None = e_closure nfa state

Valid implementation: Y N Valid property: Y N Would catch bugs: Y N na

5

Problem 8: Type Checking [Total 16 pts]

Consider the following Typing Rules for Ocaml:

G ⊢ true : bool G ⊢ false : bool G ⊢ n : int

G ⊢ x : G (x)
G ⊢ e1 : i nt G ⊢ e2 : i nt + = (i nt , i nt , i nt)

G ⊢ e1 + e2 : i nt

G ⊢ e1 : t1 G , x : t1 ⊢ e2 : t2
G ⊢ l et x = e1 in e2 : t2

G ⊢ e1 : bool G ⊢ e2 : t G ⊢ e3 : t
A; i f e1 t hen e2 el se e3 : t

Complete the typing proof for the following program to prove it is well typed.

1

3

6 7 8

4 5

2

G ⊢ let x = true in if x then 4 + 8 else 5 : int

Blank 1:

Blank 2:

Blank 3:

Blank 4:

Blank 5:

Blank 6:

Blank 7:

Blank 8:

6

Problem 9: Operational Semantics [Total 5 pts]

Consider the following rules for 2 Languages:

Language 1: Language 2

true → true true → true

false → false false → false

A(x) = v

A; x ⇒ v

A(x) = v

A; x ⇒ v

A; e1 ⇒ v1 A; e2 ⇒ v2 v3 = v1andv2

A; e1 && e2 ⇒ v3

A; e1 ⇒ v1 A; e2 ⇒ v2 v3 = v1andv2

A; ((fun x y → if x then y else x) e1 e2) ⇒ v3

A; e1 ⇒ v1 A, x : v1; e2 ⇒ v2

A; l et x = e1 in e2 ⇒ v2

A; e2 ⇒ v1 A, x : v1; e1 ⇒ v2

A; (f unx → e1) e2 ⇒ v2

Convert the following Language 1 sentence to its language 2 counterpart

A; let x = true in false && x

7

