
1

CMSC330 Spring 2023 Quiz 2
Quiz 2 Solutions

This entire quiz pertains to the OCaml Programming Language

Problem 1: Basics [Total 3 pts]

Please circle True or False for the following statements:
OCaml uses a dynamic type system True False

While OCaml doesn’t require you to declare types, types are associated with the variable
and checked at compile time.

Variables can be overwritten in expressions True False

Variables cannot be overwritten in OCaml. Ex: If you say let x = 2 and then say let x = 3,
these are 2 separate instances of x and the value of the original x is not changed.

Lists in OCaml are allocated sequentially like Arrays in C True False

Lists in OCaml are dynamically allocated as linked lists. So there is not need to say at creation,
how long the array should be.
In C, we had to do this: int[5]

Problem 2: Typing [Total 8 pts]

For the following questions, provide the type of the given functions.

(a) fun f a b -> ((f a) ˆ "z") :: b [2 pts]

• This is an anonymous function that has 3 parameters: f,a, and b

• Type of f: We can tell by the notation (f a) that f is a function that takes in the value a. Since the return value
of f is used with the ^ operator and a string "z", we can say it returns a string. The ^ operator can only be used
between 2 strings.

• Type of a: There is no specific operators used with only a to indicate the type. Therefore we can assign it a generic
type ’a.

• Type of b: Since the :: operator is only used between an element and a list, this must mean b is a list. We know
that (f a) ˆ "z" returns a string value; therefore b must be a string list.

• Return Type: Knowing that the :: operator returns a list of the same type as elements in it, we can say the return
type is a string list since b is a string list.

• Thus the type is (’a -> string) -> ’a -> string list -> string list

(b)

fun x -> fun y -> (x (y + 2)) +. 2. [2 pts]

2

• This is an anonymous function that can be interpreted in 2 ways. This is a function that returns another function
or a function that takes in 2 parameters.

• Type of y: Since y uses the + operator with the integer 2, this means that y is an integer. The + operator can only
be used between 2 integers.

• Type of x: We can tell by the function application syntax that x is a function that takes in the value (y + 2) and
returns a float. We know that (y + 2) is an int so we know x takes in an int. The reason we know the return type
is a float is because after the return value the +. operator is used along with a float 2. . The +. operator can
only be used between 2 floats. Thus the type of x is int -> float.

• Return Type: We know that x(y + 2) and 2. are floats which means a float +. a float returns a float.

• Thus the type is (int -> float) -> int -> float.

For

the following questions, write an expression of the following types. All pattern matching must be exhaustive and you cannot
use type annotations:

(c) int -> float -> (int * float) list[2 pts]

• This expression must be a function type. It takes in 2 arguments of type int and float and returns a (int *
float) list

• Return type: We can tell the return type of the function should be (int * float) list.

• Parameters: We can assign variable names to all the other types and create our 2 parameters that way. The first
parameter a has type int and the second parameter b has type float.

• Showing a’s type: In order for the compiler to recognize that a is an integer, we should use an int operator on it,
ex: a + 1. Operators like +,-,/,* are reserved for only between integers which is why the compiler recognizes
a is an int.

• Showing b’s type: Similarly, in order for the compiler to recognize that b is a float we should use float only
operators such as +., -., /., *.. Something like b +. 1. would work.

• Making the return type: Working inside out, we should first try to construct an int and float tuple. Knowing a +
1 is an int and b +. 1. is a float, combining them in a tuple ((a + 1, b +. 1.)) has the type (int *
float). To make this tuple into a list to match the return type we can add [] around them as such: [(a + 1,
b +. 1.)].

• Combining all these parts together we can create the function fun a b -> [(a + 1, b +. 1.)].

(d) ’a -> ’b -> ’b -> ’a -> ’a list[2 pts]

3

• This expression must be a function type. It takes in 4 arguments of type ’a,’b,’b,’a, and returns a ’a list,

• Return Type: The last type is always the return type; in this case ’a list.

• Parameters: We can assign variable names to all the other types and create the 4 parameters. The first parameter
a has type ’a, the second parameter b has the type ’b, the third parameter c has type ’b, and the fourth parameter
d has type ’a.

• Showing a and d’s type: In order to show that a and d are the same type we can use any comparative operator to
show they are the same type, ex: a = d, a > d, a < d. You cannot use operators such as +, -, /, etc to
show they are the same type because these are operators reserved for only int types.

• Showing b and c’s type: Similarly in order to show that b and c are the same type we can use another comparative
operator, ex: b = c.

• Making the return type: Since comparative operators return boolean values, the most likely expression you want
to use is an if statement. Something like if a = d || b = c since it combines both comparisons. Finally in
order to return ’a list we should use the 2 parameters that have an ’a type to return an ’a list, ex: [a],
[d], [d;a], etc.

• Combining these parts we can create something like: fun a b c d -> if a = d || b = c then [a]
else [d].

For questions 3 and 4, you may use the following higher order functions:

l e t rec fo ld f a l = match l with [] −> a | h : : t −> fo ld f (f a h) t
l e t rec f o l d r f l a = match l with [] −> a | h : : t −> f h (f o l d r f t a)
l e t rec map f l = match l with [] −> [] | h : : t −> (f h) : : (map f t)

Problem 3: Code Completion[Total 4 pts]

Write a function called parity_sum that takes in an int list and returns an int * int * int tuple where the first
value in the tuple is the sum of even indices, the second is the sum of the odd indices and the third value is the size of the
list. Lists are 0 indexed.
Example:
parity_sum [1;2;3;4] = (4,6,4)
parity_sum [1;10;2;20;3;30] = (6,60,6)
parity_sum [] = (0,0,0)
parity_sum [-1;-5;1,5] = (0,0,4)

l e t partity_sum l s t = fo ld (fun acc x −> ___Blank_1___) ___Blank 2___ arr

Blank 1 (3 pts):

4

• Length of list: First, let’s focus on finding the length of the list. If we iterate through each of the elements, we can
add 1 to the total count of elements which at the end would return the length of the list. We need to do this to
only the third element of the accumulator.

• Adding odd/even index only: The third element of the accumulator tells us the length of the list up to the current
element, which is basically the index of the list; thus, we can use that to find out if we are at an even or odd index.

• Combining: We can match the acc to the tuple (a, b, c) to extract each individual element. Then we can check
if c mod 2 = 0 to see if we are at an even or odd index and add x to a or b appropriately.

• This results in match acc with (a, b, c) -> if c mod 2 = 0 then (a + x, b, c + 1) else
(a, b + x, c + 1).

Blank 2 (2pts) :

Since this is the accumulator value that is given to the anonymous function this is also the base case return value. In
this case the base case would be arr = [] which means the function would return (0, 0, 0); therefore this blank
should be (0, 0, 0).

Additional Notes:

• In problems like this it is usually easier to start with the value of the accumulator. Since the starting accumulator is
the return value for the base case (usually an empty list) this is the value you want to return if you called the fold on
an empty list.

• It’s easier to come up with the body of the anonymous function if you think about what to specifically do for only one
element of the list. This element is generalized to x in the anonymous function.

• The return value of the anonymous function is the new accumulator that is used for the next element in the list. This
is also the return value of the fold call as a whole so think about what specifically you want the fold call to return.

Problem 4: Coding [Total 5 pts]

Duplicate
Create a function dup_elems lst n that duplicates every element in lst n times

Example:
dup_elems [1;2;3;4] 1 = [1;1;2;2;3;3;4;4]
dup_elems [] 2 = []
dup_elems ["a";"a";"b";"c"] 0 = ["a";"a";"b";"c"]

• For question 4, there are a couple of approaches we can take (both using recursion exclusively, or using both higher
order functions (fold) and recursion).

• Let’s start by analyzing the different examples/cases we’re given. When we pass in an empty list, we return an empty
list, regardless of what n is. If n = 0, there are no duplicates, and we return the original list. For n >= 1, we repeat
each element in our lst n times. In all cases, the result is a list.

• Helper Function:

– Purpose: If n >= 1, we need to be able to have something in our code that allows us to be able to repeat the
number of elements. This can be done more clearly through a helper function, which takes in the element we
want to repeat, and how many times we want to repeat it.

5

– Return Type: Now, the harder part: what do we want our helper function to return? Since we want to return
multiple of the same elements, the best return value would be the repeated elements in a list. We wouldn’t
want to return a single integer, since that doesn’t make sense for multiple elements, or a tuple, since we don’t
know how many elements we want to repeat (we can’t make a fixed size tuple if we’re calling the helper with
multiple values for n).

– Solution: Since there’s no restriction on using the @ operator in this question, this can help us in writing our
solution. In both cases, we want our helper function to duplicate a given element n times.
let rec dup_helper elem n =
match n with
| 0 -> [elem]
| _ -> elem :: dup_helper elem (n - 1)

– In this helper, if we hit the base case where n = 0, we return the provided element, as we don’t want it to
be repeated. In all other cases of n (we use the wildcard here), we add the element to our growing list, and
recursively call our helper.

Now that we have our helper, we can take a recursive approach, or use fold.

• With recursion:

– let rec duplicate lst n = match lst with
| [] -> []
| h::t -> (dup_helper h n) @ duplicate t n

– Here, we only need to do an explicit check on the list whether to return an empty list. We don’t need to check
the value of n, since that is handled in the recursive helper

• With fold:

– let duplicate lst n = fold (fun a x -> a @ dup_helper x n) [] lst

– Similar to the recursive approach, we look at every element in the list, and call the recursive helper with each
element and n, and append that to our accumulator (which is a list).

