
1

CMSC330 - Organization of Programming Languages
Spring 2023 - Final

CMSC330 Course Staff
University of Maryland

Department of Computer Science

Name:

UID:

I pledge on my honor that I have not given or received any unauthorized assistance on this assignment/examination

Signature:

Ground Rules

• You may use anything on the accompanying reference sheet anywhere on this exam

• Please write legibly. If we cannot read your answer you will not receive credit

• You may not leave the room or hand in your exam within the last 10 minutes of the exam

• If anything is unclear, ask a proctor. If you are still confused, write down your assumptions in the margin

Question Points
Q1 10
Q2 7
Q3 15
Q4 15
Q5 12
Q6 15
Q7 18
Q8 8
EC 5

Total 100 + 5



2

Problem 1: Language Concepts [Total 10 pts]

(λx .abx ) is alpha-equivalent to (λc .x yc) True False
cannot convert free variables

For statically typed languages, type checking occurs during the parsing phrase True False
Maybe we drop this, because it can depend on the language, but I would say this is the evaluator’s job

Dangling Pointers are prevented in Rust True False
This is one of the things that the reference rules prevent

Lifetimes are part of a variable’s type in Rust True False
In lecture and in the rust book

"Missing semicolon on line 12" is an error that would raised during evaluation True False
parser’s job. This is called a linter

S → S − S |n is an ambiguous grammar True False
n - n - n
Grammar is a subset of Syntax True False
structure is part of how something looks

Mark and Sweep is faster than Reference Counting on average True False
Stated in class

A rust function with the following header will compile: fn myst(a:&str, b:&u32, c:&u32) -> &str True False
Rust cannot determine the return’s lifetime so it needs explicit lifetimes here

Ocaml’s ’let x = x +1 in x’ is operationally the same as Ruby’s ’x = x + 1’ True False
One makes a new binding to a new variable, the other updates the binding

Problem 2: Regex [Total 7 pts]

(a) Which of the following strings are accepted by the regular expression below?

/[λδσ]+ω |β/

Circle NONE if none of the first five (5) options match. [3 pts]

λλβ δ δωλ σλββ ωβ NONE
The scope of the OR is not restricted

(b) Write a regular expression that describes a comma separated integer list of odd length. [4 pts]

Examples:

Valid Invalid
1 1,2
1,2,3 1.3
-6,-1,-3

/ˆ-?\d+(,-?\d+,-?\d+)*$/



3

Problem 3: Higher Order Functions[Total 15 pts]

Given the following type, write an expression that matches that type. You may not use type annotations and all pattern
matching must be exhaustive. You must use map or fold in your answer

(a) string list -> string[3 pts]

fun a -> fold (fun a h -> a ˆ h) "" a

(b) ’a list -> ’b list -> (’a list -> ’b -> ’a list) -> (’a -> ’c) -> ’c list[3 pts]

fun a b c d -> map d (fold c a b)

Given the expression, write down it’s type. You will need to evaluate it first

(c) fun a b c -> if a b then [b+1] else c[3 pts]

(int -> bool) -> int -> int list -> int list

(d) (fun x -> fun y -> y x) ((fun y -> y + 1) 5)[3 pts]

(int -’a) -> ’a

(e) let c = if true then false else true in fun a -> fun b c -> b c > a c[3 pts]

(’a -> ’b) -> (’a -> ’b) -> ’a -> bool

The first ’let c = ...’ is useless since the second fun will rebind c to an input



4

Problem 4: Finite State Machines [Total 15 pts]

Using the subset algorithm, convert the following NFA to a DFA, and fill in the blanks appropriately matching the DFA pro-
vided with the right nodes and transitions. Only the blanks will be graded.

NFA: Scratch Space (if needed)

41

2 5

6

3c

b

a

b

aa
ϵ

b
a ϵ

a

ϵ

DFA:

S3S1

S2 S4

S5

E1

E2
E3

E4 E5

E6

E7

E8

S1:
1

S2:
2

S3:
4,5,6

S4:
3

S5:
3,4,5,6

E1:
c

E2:
b|a

E3:
a|b

E4:
b

E5:
b

E6:
a

E7:
b

E8:
a

E2 and E3 could be swapped
Final States:

S1 S2 S3 S4 S5



5

Problem 5: Operational Semantics[Total 12 pts]

Consider the following rules for 2 Languages, using Ruby as the Metalanguage:

Language 1: Language 2

true → true true → true

false → false false → false

A(x ) = v
A; x ⇒ v

A(x ) = v
A; x ⇒ v

A; e1 ⇒ v1 A; e2 ⇒ v2 v3 = v1andv2
A; e1 && e2 ⇒ v3

A; e1 ⇒ v1 A; e2 ⇒ v2 v3 = v1andv2
A; (λx .λy .x yx )e1 e2 ⇒ v3

A; e1 ⇒ v1 A, x : v1; e2 ⇒ v2

A; l et x = e1 in e2 ⇒ v2

A; e2 ⇒ v1 A, x : v1; e1 ⇒ v2

A; (λx : e1) e2 ⇒ v2

(a) Convert the following Language 1 sentence to it’s language 2 counterpart[5 pts]

A; let x = true in false && x

A;(λx:(λx.λy. x y x) false x) true

(b) Complete the opsem proof for the following program using Language 1:
[7 pts]

let x = true in false && x

1

2

3

4
5

6
⇒

7

A; let x = true in false && x ⇒ false

Blank 1:
A;true => true

Blank 2:
A,x:true; false => false

Blank 3:
A,x:true(x) = true

Blank 4:
A,x:true; x => true

Blank 5:
false = false and false

Blank 6:
A,x:true; false && x

Blank 7:
false



6

Problem 6: Lambda Calculus [Total 15 pts]

Perform a single β -reduction using lazy (call by name) evaluation on the outermost expression. If you cannot reduce it,
write Beta Normal Form. Do not α-convert your final answer.

(a) (a λx . x a) (λy . y y ) [3 pts]

Beta Normal Form

Perform a single β -reduction using Eager (call by value) evaluation on the outermost expression. If you cannot reduce it,
write Beta Normal Form. Do not α-convert your final answer.

(b) (λx . a b c) ((λx . (x x )) x ) [3 pts]

(λx . a b c) (x x )

Convert the following expressions to Beta Normal Form. If it is already in Beta Normal Form, circle BNF. If the answer is not
given, circle None.

(c) (λx . λy . x y ) ((λb . b b) y ) [3 pts]

λy . y y y λy . x x y λa . y y a y y y BNF infinite recursion None

(d) (λx . x x x ) (λx . x x x ) [3 pts]

(λx . x x x ) x x x (λx . x x x ) (λx . x x x ) x BNF infinite recursion None

(e) λx . (λb . a b) (λb . a b) [3 pts]

λx . (λb . a b) (λb . a b) a b λx . a λb . a b BNF infinite recursion None



7

Problem 7: Coding[Total 18 pts]

Consider the following Grammar, where n is any integer:

S → N + S | (N )
N → n

(a) Ruby Lexer[8 pts]

Write a lexer for this grammar in Ruby, you may use the following as tokens

# tokens : n , " Plus " , " RParen " , " LParen "
# example input −output
lex ( " 2  *  −5  +  6 " ) = IOError
lex ( " 2  −7  9  −10 " ) = [ " 2 " , " −7 " , " 9 " , " −10 " ]
lex ( " ( −2 )  +  ( 3 ) " ) = [ " LParen " , " −2 " , " RParen " , " Plus " , " LParen " , " 3 " , " RParen " ]
# I f an error occurs , you may ra i se an error
ra i se IOError . new ( " Er ror " )

def lex(str)



8

(b) Ocaml Parser [10 pts]

Using the same grammar as before, where n is any integer:

S → N + S | (N )
N → n

Write a parser for the S non-terminal in OCaml. You may use the following types and functions:

type tok = I n t of i n t | Plus | RParen | LParen
type t ree = Add of t ree * tree | Leaf of i n t

l e t lookahead toks = match toks with [ ] −> None | h : : t −> Some h
l e t match_tok toks tok = match toks [ ] −> ra i se Error | h : : t when h = tok −> t | _ −> ra i se Error
( * You may assume ra i se Er ror i s va l id and compiles * )

You may assume there is a parse_n function of type tok list → (tree * tok list) and that it is correct.
The type of parse_s is tok list → (tree * tok list)

let rec parse_s toks =



9

Problem 8: Rust[Total 8 pts]

1 fn main ( ) {
2 l e t m = S t r i n g : : from ( " Hello " ) ;
3 l e t t = S t r i n g : : from ( " World " ) ;
4 { l e t y = m;
5 { l e t c = myfunc ( y , t ) ;
6 l e t d = &c ;
7 }
8 }
9 }

10
11 fn myfunc < ’ a > ( a : Str ing , b : S t r i n g ) −> S t r i n g {
12 i f a . len ( ) > b . len ( ) { a } else { b }
13 }

Ownership
If there is no owner, write "NONE".

Who is the owner of "Hello" immediately after line 11 is run?
a

Who is the owner of "World" immediately after line 5 is run?
c

Lifetimes

What is the last line executed before "Hello" dropped?
12/13

What is the last line executed before "World" dropped?
6/7

Problem 9: Extra Credit[Total 3 pts]

What is your favorite pun?
I’m not a programmer, I’m pro-grammar

Problem 10: Extra Credit[Total 2 pts]

Who is your discussion TA and what is your section number?
Better question: who was your favorite TA?



10

You may use this area as scratch space


