
1

CMSC330 - Organization of Programming Languages
Spring 2023 - Exam 2 Solution

CMSC330 Course Staff
University of Maryland

Department of Computer Science

Name:

UID:

I pledge on my honor that I have not given or received any unauthorized assistance on this assignment/examination

Signature:

Ground Rules

• You may use anything on the accompanying reference sheet anywhere on this exam

• Please write legibly. If we cannot read your answer you will not receive credit

• You may not leave the room or hand in your exam within the last 10 minutes of the exam

• The last page is blank and scratch work can be done there.

• If anything is unclear, ask a proctor. If you are still confused, write down your assumptions in the margin

Question Points
Q1 10
Q2 18
Q3 10
Q4 12
Q5 15
Q6 15

Total 80

2

Problem 1: Language Concepts [Total 10 pts]

An improper garbage collector can cause security vulnerabilities True False
Having things stay in memory for too long is a security vulnerability

Modern Languages use a combination of Reference Counting, Mark and Sweep and Stop and Copy True False
Stated in Lecture, more efficeint to do this

Lambda Calculus Expressions can be converted to Finite State Machines True False
Lambda Calculus cannot be expressed as a FSM

The relation of FSM to Regex is bijective (1 to 1) True False
Some NFAs represent the same regex

Eager and Lazy Evaluation will always give the same result True False
Consider cases of infinite reduction: (λx .a) ((λx .xx) (λy .y y))

Problem 2: Finite State Machines [Total 18 pts]

(a) Using the subset algorithm, convert the following NFA to a DFA, and fill in the blanks appropriately matching the DFA
provided with the right nodes and transitions. Only the blanks will be graded. [12 pts]

NFA: Scratch Space (if needed)

0start 3

4

2

1

5

a

a

ϵ c

ϵ
b

ϵ

ϵ

DFA:

S2

S3

S1start S4

E1

E2

E3

E4
E5

E6

E7

E8

So since state S4 and S2 can be swapped, any transitions to them can also be interchanged.

3

S1:
0,2,4

S2:
2,4,5 | 2,3,4,5

S3:
1

S4:
2,3,4,5 | 2,4,5

E1:
a

E2:
a

E3:
b | c

E4:
c | b

E5:
c | b

E6:
b | c

E7:
c | b

E8:
b | c

(b) Write a regex to describe the language of the above NFA[3 pts]

(a+)|(b |c)+

States 0 and 1 represent a+, States 2, 4, 5 represent b+, States 2, 3, 5 represent c+. So together, 2, 3, 4, 5 represents
(c |b)+.

(c) Vending Machine Fun[3 pts]

Suppose there is a vending machine which takes in quarters (Q), dimes (D) and nickles (N). Consider the following actions
you can perform when interacting with the vending machine:

Action N: Insert a Nickle Action D: Insert a Dime Action Q: Insert a Quarter

The price of each item is $0.25. However, the FSM for the machine was leaked and turns out you can pay less than $0.25 per
item. List out the operations you want to perform to pay less than $0.25. For example, if you wanted to put in 2 quarters,
followed by 1 dime, followed by 3 nickles, your answer should be Q,Q,D,N,N,N.

S0

S1 S3

S4 S5

S6

Q
D

N

Q,N,D

Q

N

D

Q N,D,Q

N

Q,D

N,D,N is $0.20 (S0 → S4 → S5 → S1)

4

Problem 3: CFGs [Total 10 pts]

Consider the following Grammars:

Grammar 1 Grammar 2 Grammar 3
S → aSb

| aaSb

| aaaSb

| ϵ

S → AAASB | ϵ
A → a | ϵ
B → b

S → ASB

A → aA | ϵ
B → bbbB |ϵ

(a) Which of the following grammars describe strings of axb y , x < 3y ? Select all that apply. [2 pts]

Grammar 1 Grammar 2 Grammar 3 None

Not possible because if y = 0, then x has to be negative. Grammar 1 and Grammar 2 describe the same thing: x ≤ 3y . The
third does not terminate.

(b) Prove that Grammar 2 is ambiguous [3 pts]

S → AAASB → AASB → ASB → aSB → aB → ab

S → AAASB → aAASB → aASB → aSB → aB → ab

(c) Draw the abstract syntax tree that would be generated by parsing the following string with the given CFG using a leftmost

derivation. [5 pts]

String: "1 * 2 + 3"
CFG:
S -> M * S | M
M -> M + N | N
N -> 1 | 2 | 3 | (N), where n is any number

∗

1 +

3 4

5

Problem 4: Operational Semantics[Total 12 pts]

Consider the following rules for LOLCODE, using OCaml as the Metalanguage:

Rule 1:
WIN → WIN

Rule 2:
FAIL → FAIL

Rule 3:
A; e1 ⇒ v1 A; e2 ⇒ v2 v1 <> v2

A; DIFFRINT e1 AN e2 ⇒ WIN
Rule 4:

A; e1 ⇒ v1 A; e2 ⇒ v2 v1 = v2

A; DIFFRINT e1 AN e2 ⇒ FAIL

Rule 5:
A, x : v (x) = v

A, x : v ; x ⇒ v
Rule 6:

A; e1 ⇒ v1 A, x : v1; e2 ⇒ v2

A; HAS A x ITZ e1 \n e2 ⇒ v2

Rule 7:
A; e1 ⇒ v1 A; e2 ⇒ v2 v3 = if v1 > v2 then v1 else v2

A; BIGGR OF e1AN e2 ⇒ v3
Rule 8:

A; n → n

(a) What are the axioms in this language? Select all the apply.[4 pts]

Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7 Rule 8 none

(b) Complete the opsem proof for the following program:[8 pts]

HAS A x ITZ 7 \n DIFFRINT 2 AN (BIGGR OF 2 AN x) => WIN

1

3

A, x : 7; 2 ⇒ 2

8

A, x : 7; x ⇒ 7
7 =

7

A, x : 7;
4

⇒
5 6

A, x : 7; DIFFRINT 2 AN
2

⇒ WIN
A; HAS A x ITZ 7 \n DIFFRINT 2 AN (BIGGR OF 2 AN x) ⇒ WIN

Blank 1:
A; 7 ⇒ 7

Blank 2:
BIGGR OF 2 AN x

Blank 3:
A, x : 7; 2 ⇒ 2

Blank 4:
BIGGR OF 2 AN x

Blank 5:
7

Blank 6:
2 <> 7

Blank 7:
if 2 > 7 then 2 else 7

Blank 8:
A, x : 7(x) = 7

6

Problem 5: Lambda Calculus [Total 15 pts]

For the following questions perform a single β -reduction using lazy (call by name) evaluation on the outermost expression.
If you cannot reduce it, write Beta Normal Form. You may not α-convert your final answer.

(a) (λx .xλy .x y) (y (λx .yx)) [2 pts]

(y (λx .yx))λy .(y (λx .yx))y - We use (y (λx .yx)) as input to (λx .xλy .x y)

(b) (λx .λx .xx) ((λx .yx) ((λa .aa)b)) [2 pts]

λx .xx - We use ((λx .yx) ((λa .aa)b)) as input to (λx .λx .xx)

For the following questions perform a single β -reduction using Eager (call by value) evaluation on the outermost expression.
If you cannot reduce it, write Beta Normal Form. You may not α-convert your final answer.

(c) (λx .xλy .x y) (y (λx .yx)) [2 pts]

(y (λx .yx))λy .(y (λx .yx))y - we still need to beta reduce
but since the argument cannot be reduced further, we just reduce the outermost expression. Same as part (a)

(d) (λx .λx .xx) ((λx .yx) ((λa .aa)b)) [2 pts]

(λx .λx .xx) ((λx .yx) (bb)) or (λx .λx .xx) (y ((λa .aa)b)). We did not talk about what to do here

(e) Convert the following to Beta Normal Form: (λx .(λy .xa)b) (λx .ax) [3 pts]

λx .ax c d b a a a can’t reduce infinite recursion None

Consider the following lambda calculus bindings:
true = λx .λy .x
false = λx .λy .y
if e1 then e2 else e3 = e1 e2 e3

(f) Encode the following expression: if false then false else true [4 pts]

(λx .λy .y) (λx .λy .y) (λx .λy .x)

7

Problem 6: Lexing, Parsing, Evaluation[Total 15 pts]

Consider the following modified Math-ew from lecture:

E ⇒ + E E | ∗ E E | sq E | exp E E | and E E |or E E | N
N ⇒ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |t r ue | f al se

You may assume that the behaviour is the same as Ocaml.
(a) Lexing[5 pts]

Which of the following phrases would fail the lexing stage for the Math-ew Language? Please bubble in the circle

A 2 * 3 sq 2 3 B 4 ˆ 5 C - + 1 23

D exp -2 5 E 5 exp 2 + 6 F * 2 and true false

G and true or false false H false true I true and false or true
B, C, D: Basically, which phrases have symbols not in the grammar?

(b) Parsing[5 pts]

Which of the following phrases would fail the parsing stage for the Math-ew Language? If it failed the lexing phase, do not
mark it.

A 2 * 3 sq 2 3 B 4 ˆ 5 C - + 1 23

D exp -2 5 E 5 exp 2 + 6 F * 2 and true false

G and true or false false H false true I true and false or true
A,E,H,I: Basically, which phrases are grammatically incorrect?

(c) Evaluation[5 pts]

Which of the following phrases would fail the evaluator stage for the Math-ew Language? If it failed the lexing or parsing
phase, do not mark it.

A 2 * 3 sq 2 3 B 4 ˆ 5 C - + 1 23

D exp -2 5 E 5 exp 2 + 6 F * 2 and true false

G and true or false false H false true I true and false or true
F: Basically, which phrases don’t make sense? The only 2 left are F anf G. Since we said behaviour is same as Ocaml, we can
definitely or and and booleans of true and false. We cannot however, multiply 2 and the result of and-ing true and false

8

You can use this page for scratch work:

