Name: ________________________________
UID: ________________________________

I pledge on my honor that I have not given or received any unauthorized assistance on this assignment/examination

Signature: ________________________________

Ground Rules

• You may use anything on the accompanying reference sheet anywhere on this exam
• Please write legibly. If we cannot read your answer you will not receive credit
• You may not leave the room or hand in your exam within the last 10 minutes of the exam
• The last page is blank and scratch work can be done there.
• If anything is unclear, ask a proctor. If you are still confused, write down your assumptions in the margin

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>10</td>
</tr>
<tr>
<td>Q2</td>
<td>18</td>
</tr>
<tr>
<td>Q3</td>
<td>10</td>
</tr>
<tr>
<td>Q4</td>
<td>12</td>
</tr>
<tr>
<td>Q5</td>
<td>15</td>
</tr>
<tr>
<td>Q6</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>80</td>
</tr>
</tbody>
</table>
Problem 1: Language Concepts

An improper garbage collector can cause security vulnerabilities
Having things stay in memory for too long is a security vulnerability

Modern Languages use a combination of Reference Counting, Mark and Sweep and Stop and Copy
Stated in Lecture, more efficient to do this

Lambda Calculus Expressions can be converted to Finite State Machines
Lambda Calculus cannot be expressed as a FSM

The relation of FSM to Regex is bijective (1 to 1)
Some NFAs represent the same regex

Eager and Lazy Evaluation will always give the same result
Consider cases of infinite reduction: \((\lambda x. a)((\lambda x.x)(\lambda y.y))\)

Problem 2: Finite State Machines

(a) Using the subset algorithm, convert the following NFA to a DFA, and fill in the blanks appropriately matching the DFA provided with the right nodes and transitions. Only the blanks will be graded.

NFA:

DFA:

So since state \(S4 \) and \(S2 \) can be swapped, any transitions to them can also be interchanged.
(b) Write a regex to describe the language of the above NFA

\[(a+)|(b|c)\]⁺

States 0 and 1 represent \(a^+\), States 2, 4, 5 represent \(b^+\), States 2, 3, 5 represent \(c^+\). So together, 2, 3, 4, 5 represents \((c|b)^+\).

(c) Vending Machine Fun

Suppose there is a vending machine which takes in quarters (Q), dimes (D) and nickles (N). Consider the following actions you can perform when interacting with the vending machine:

- Action N: Insert a Nickle
- Action D: Insert a Dime
- Action Q: Insert a Quarter

The price of each item is $0.25. However, the FSM for the machine was leaked and turns out you can pay less than $0.25 per item. List out the operations you want to perform to pay less than $0.25. For example, if you wanted to put in 2 quarters, followed by 1 dime, followed by 3 nickles, your answer should be Q, Q, D, N, N, N.

\[N,D,N \text{ is } $0.20 (S0 \rightarrow S4 \rightarrow S5 \rightarrow S1)\]
Problem 3: CFGs

Consider the following Grammars:

<table>
<thead>
<tr>
<th>Grammar 1</th>
<th>Grammar 2</th>
<th>Grammar 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S \rightarrow aSb$</td>
<td>$S \rightarrow AAASB \mid \epsilon$</td>
<td>$S \rightarrow ASB$</td>
</tr>
<tr>
<td>$\mid aaSb$</td>
<td>$A \rightarrow a \mid \epsilon$</td>
<td>$A \rightarrow aA \mid \epsilon$</td>
</tr>
<tr>
<td>$\mid aaaSb$</td>
<td>$B \rightarrow b$</td>
<td>$B \rightarrow bbbB \mid \epsilon$</td>
</tr>
<tr>
<td>$\mid \epsilon$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Which of the following grammars describe strings of $a^x b^y$, $x < 3y$? Select all that apply. [2 pts]

Grammar 1 Grammar 2 Grammar 3 None

Not possible because if $y = 0$, then x has to be negative. Grammar 1 and Grammar 2 describe the same thing: $x \leq 3y$. The third does not terminate.

(b) Prove that Grammar 2 is ambiguous [3 pts]

```
S \rightarrow AAASB \rightarrow AASB \rightarrow ASB \rightarrow aSB \rightarrow aB \rightarrow ab
```

(c) Draw the abstract syntax tree that would be generated by parsing the following string with the given CFG using a leftmost derivation. [5 pts]

String: "1 * 2 + 3"

CFG:

$S \rightarrow M \ast S \mid M$

$M \rightarrow M \ast N \mid N$

$N \rightarrow 1 \mid 2 \mid 3 \mid (N)$, where n is any number
Problem 4: Operational Semantics

Consider the following rules for LOLCODE, using OCaml as the Metalanguage:

Rule 1: \(\text{WIN} \rightarrow \text{WIN} \)

Rule 2: \(\text{FAIL} \rightarrow \text{FAIL} \)

Rule 3: \(A; e_1 \Rightarrow v_1 A; e_2 \Rightarrow v_2 v_1 <> v_2 \rightarrow A; \text{DIFFRINT } e_1 \text{ AN } e_2 \Rightarrow \text{WIN} \)

Rule 4: \(A; e_1 \Rightarrow v_1 A; e_2 \Rightarrow v_2 v_1 = v_2 \rightarrow A; \text{DIFFRINT } e_1 \text{ AN } e_2 \Rightarrow \text{FAIL} \)

Rule 5: \(A; x : \nu (x) = \nu \rightarrow A; \text{HAS A } x \text{ ITZ } \Rightarrow \text{WIN} \)

Rule 6: \(A; e_1 \Rightarrow v_1 A, x : v_1; e_2 \Rightarrow v_2 A; \text{HAS A } x \text{ ITZ } e_1 \text{ AN } e_2 \Rightarrow \text{WIN} \)

Rule 7: \(A; e_1 \Rightarrow v_1 A; e_2 \Rightarrow v_2 v_3 = \text{if } v_1 > v_2 \text{ then } v_1 \text{ else } v_2 A; \text{BIGGR OF } e_1 \text{ AN } e_2 \Rightarrow v_3 \)

Rule 8: \(A; n \Rightarrow n \)

(a) What are the axioms in this language? Select all that apply.

- Rule 1
- Rule 2
- Rule 3
- Rule 4
- Rule 5
- Rule 6
- Rule 7
- Rule 8
- None

(b) Complete the opsem proof for the following program:

\[
\begin{align*}
A; \text{HAS A } x \text{ ITZ } 7 \n\text{DIFFRINT } 2 \text{ AN } (\text{BIGGR OF } 2 \text{ AN } x) & \Rightarrow \text{WIN} \\
A, x : 7; 2 & \Rightarrow 2 \\
A, x : 7; x & \Rightarrow 7 \\
A, x : 7; 4 & \Rightarrow 5 \\
A; \text{HAS A } x \text{ ITZ } 7 \n\text{DIFFRINT } 2 \text{ AN } (\text{BIGGR OF } 2 \text{ AN } x) & \Rightarrow \text{WIN} \\
8 & = 7 \\
7 & = 7 \\
3 & = 7 \\
6 & = 2 \\
1 & \Rightarrow \text{WIN} \\
\end{align*}
\]

Blank 1: \(A; 7 \Rightarrow 7 \)
Blank 2: \(\text{BIGGR OF } 2 \text{ AN } x \)
Blank 3: \(A, x : 7; 2 \Rightarrow 2 \)
Blank 4: \(\text{BIGGR OF } 2 \text{ AN } x \)
Blank 5: \(7 \)
Blank 6: \(2 <> 7 \)
Blank 7: \(\text{if } 2 > 7 \text{ then } 2 \text{ else } 7 \)
Blank 8: \(A, x : 7(x) = 7 \)
Problem 5: Lambda Calculus

For the following questions perform a single β-reduction using lazy (call by name) evaluation on the outermost expression. If you cannot reduce it, write **Beta Normal Form**. You may not α-convert your final answer.

(a) $(\lambda x. x y y)((y (\lambda x. y x)))$

\[
(y (\lambda x. y x)) (\lambda y. (y (\lambda x. y x))) y - \text{We use } (y (\lambda x. y x)) \text{ as input to } (\lambda x. x y y)
\]

(b) $(\lambda x. x x)((\lambda x. y x)((\lambda a. a a) b))$

\[
\lambda x. x x - \text{We use } ((\lambda x. y x)((\lambda a. a a) b)) \text{ as input to } (\lambda x. x x)
\]

For the following questions perform a single β-reduction using Eager (call by value) evaluation on the outermost expression. If you cannot reduce it, write **Beta Normal Form**. You may not α-convert your final answer.

(c) $(\lambda x. x y y)(y (\lambda x. y x))$

\[
(y (\lambda x. y x)) (\lambda y. (y (\lambda x. y x))) y - \text{we still need to beta reduce but since the argument cannot be reduced further, we just reduce the outermost expression. Same as part (a)}
\]

(d) $(\lambda x. x x)((\lambda x. y x)((\lambda a. a a) b))$

\[
(\lambda x. x x)((\lambda x. y x)((\lambda a. a a) b)) \text{ or } (\lambda x. x x)((\lambda a. a a) y((\lambda a. a a) b)). \text{ We did not talk about what to do here}
\]

(e) Convert the following to Beta Normal Form: $(\lambda x. (\lambda y. x) a)(\lambda x. a x)$

\[
\lambda x. x x \quad c d \quad b a \quad a a \quad \text{can't reduce} \quad \text{infinite recursion} \quad \text{None}
\]

Consider the following lambda calculus bindings:

true $= \lambda x. y x$
false $= \lambda x. y y$
if e_1 then e_2 else $e_3 = e_1 e_2 e_3$

(f) Encode the following expression: if false then false else true

\[
(\lambda x. y y)(\lambda x. y y)(\lambda x. y x)
\]
[Total 15 pts] **Problem 6: Lexing, Parsing, Evaluation**

Consider the following modified Math-ew from lecture:

\[
E \Rightarrow + E E | \ast E E | sq E | exp E E | or E E | N \\
N \Rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | true | false
\]

You may assume that the behaviour is the same as Ocaml.

(a) Lexing [5 pts]

Which of the following phrases would fail the lexing stage for the Math-ew Language? Please bubble in the circle

A 2 * 3 sq 2 3
B 4 ^ 5
C - + 1 23
D exp -2 5
E 5 exp 2 + 6
F * 2 and true false
G and true or false false
H false true
I true and false or true

B, C, D: Basically, which phrases have symbols not in the grammar?

(b) Parsing [5 pts]

Which of the following phrases would fail the parsing stage for the Math-ew Language? If it failed the lexing phase, do not mark it.

A 2 * 3 sq 2 3
B 4 ^ 5
C - + 1 23
D exp -2 5
E 5 exp 2 + 6
F * 2 and true false
G and true or false false
H false true
I true and false or true

A,E,H,I: Basically, which phrases are grammatically incorrect?

(c) Evaluation [5 pts]

Which of the following phrases would fail the evaluator stage for the Math-ew Language? If it failed the lexing or parsing phase, do not mark it.

A 2 * 3 sq 2 3
B 4 ^ 5
C - + 1 23
D exp -2 5
E 5 exp 2 + 6
F * 2 and true false
G and true or false false
H false true
I true and false or true

F: Basically, which phrases don't make sense? The only 2 left are F anf G. Since we said behaviour is same as Ocaml, we can definitely or and and booleans of true and false. We cannot however, multiply 2 and the result of and-ing true and false.
You can use this page for scratch work: