CMSC330 Spring 2018 Midterm 2
9:30am/ 11:00am/ 3:30pm

Name (PRINT YOUR NAME as it appears on gradescope):

Discussion Time (circle one) 10am 1lam 12pm 1pm 2pm 3pm
Instructions
e Do not start this test until you are told to do so!

You have 75 minutes to take this midterm.

This exam has a total of 100 points, so allocate 45 seconds for each point.

This is a closed book exam. No notes or other aids are allowed.

Answer essay questions concisely in 2-3 sentences. Longer answers are not needed.
For partial credit, show all of your work and clearly indicate your answers.

Write neatly. Credit cannot be given for illegible answers.

Problem Score

1 PL Concepts /9

2 Finite Automata /21

3 Context Free Grammars /20

4 Parsing /17

5 Operational Semantics /10

6 Lambda Calculus /13

7 FP & Objects, Tail Recursion /10
Total /100

1. PL concepts [9 pts]

A. [4 pts] Circle true or false for each of the following (1 point each):

a) True/ False
b) True / False
c) True/ False
d) True/ False

Any language accepted by an NFA can be accepted by a DFA
There are some regexps that do not have a corresponding DFA
Lambda calculus is Turing complete

The Y combinator is used to encode numbers and addition

B. [1 pt] In my SmallC interpreter, the token list for string “1-1” showed up as
[Tok _Num 1; Tok Num -1].1was expecting [Tok Num 1, Tok_Minus,
Tok_Num 17]. This problem is caused by an error in my (circle the right one):

a) Interpreter

b) Lexer
c) Parser

d) Type Checker

C. [4 pts] What is printed when evaluating the following expression using the CBV
(Call by value) and CBN (Call by name) evaluation strategy?

(fun x -> x; x) (print_string "hi")

CBV

CBN

2. Finite Automata [21 pts]

A. [4 pts] Consider the following automaton which operates over alphabet {a,b}.

@~
4;,@?@

Which of the following are true about it (circle the letter of the statement)?

(2 pts) It is an DFA

a.
b. (2 pts) It is minimal
B. [5 pts] Which of the following strings are accepted by this automaton? Circle them.

aababaa abbbaaa bbba bbabbaba aaabbbaabba

C. [6 pts] Draw a finite automaton that accepts the same strings as the regular expression
(a|b)+| (ab*c)

D. [6 pts] Convert following NFA to a DFA.

3. Context Free Grammars [20 pts]

A. [1pt] True / False In the following grammar, the + operator is left-associative.
E—-E+T|E-T| T
T—alb|c|(E)

B. [11 pts] Consider the following CFG, in which p and q are terminals, and A and B are
nonterminals.
a. [4 pts] Which of the following strings are accepted? Circle them.
A->pAq|B
B->pB|Bq|pq

Circle: pPPAAq papq pPPq p

b. [3 pts] Give a regular expression that accepts the same strings as the CFG. If this
is not possible, explain why.

c. [4 pts] Show that the CFG is ambiguous.

C. [4 pts] Change the following CFG to eliminate left recursion

S->SandS|T
T -> true | false

D. [4 pts] Give a CFG that starts with one or more y followed by twice as many x or z. The
grammar accepts the following strings (and many others): yxx, yzz, yzx, yxX, YYXzzX, yyzZXzX,
YYYXXXXXX, ...

4. Parsing [17 pts]

A. [2 pts] Circle whether the following are true or false
a. True / false Recursive descent parsing works bottom-up

b. True /false Recursive descent parsing is a kind of predictive parsing

B. [2 pts] Name two features of a grammar that make it unsuitable for recursive descent
parsing.

Now Consider the following context-free grammar (CFG):

S —Ac|dS
A — aBA|¢
B-bB|c

C. [1 point] Circle the correct answer about the CFG definition for nonterminal B.

B is left recursive
B is right recursive
B is ambiguous
None of the above

a0 oo

D. [4 points] What are the FIRST SETS of each of the nonterminals in the grammar?

E. (8 points) Complete the implementation for a recursive-descent parser for the CFG.

exception ParseError of string

let tok_list = ref [];; (* filled in by scanner *) S — Ac | dS
let lookahead () = A —aBA|¢
match !tok_list with B—bB|c
[] -> None

| (h::t) -> Some h
let match_tok a =
match !tok list with
| (h::t) when a = h -> tok_list := t
| _ -> raise (ParseError "bad match")

let rec parse_S() =
if (lookahead() = Some "a") || (lookahead() = Some "c") then
(parse_A();
match_tok "c")
else (* FILL IN - 4 pts *)

and parse_A() = (* FILL IN - 4 pts *)

and parse_B() =
if lookahead() = Some "b" then
(match_tok "b";
parse B())
else if lookahead() = Some "c" then
match_tok "c"
else raise (ParseError "bad match")

5. Operational Semantics [10 pts]

A. [3 pts] Describe in English what the operator myst does, or give its usual name (you
have seen it before).

A; ep = true A; ea = true A; e1 = false A; es = false
Mystery(1): Mystery(2):
A; ey myst es = false A; ey myst es = false
A; ey = true A; e; = false A; ey = false A; es = true
Mystery(3): Mystery(4):

A; ey myst eg = true A; e myst eg = true

B. [3 pts] Below are incorrect rules for conditionals. Circle the key part of each rule that is
incorrect. Feel free to explain, for clarity.

A;e = true A;e = false

A;SléAl A;81:>A1

A8 = A A;80 = A
Bad-If-True L1 %2 2 Bad-If-False 1198 2

A;if e 51 50 = Ay A;if e 51 59 = Ay

C. [4 pts] The statement s unless e will execute statement s if e evaluates to false and
has no effect if e evaluates to true. Implement the semantics for unless by filling in the
boxes below. (Like in SmallC, you can assume that expressions have no effect on the
environment.)

Unless-True

A;sunless e =

Unless-False

A;s unless e =

10

6. Lambda Calculus [12 pts]

A. [2 pts] Circle all occurrences of free variables in the following A-term:
M. Z (M. XYy)y X
B. [2 pts] Circle whether the following statements are true or false

a. True / False AX.Ay.y X is alpha-equivalent to Af.An.f n

b. True / False AX.Ay.y X is alpha-equivalent to (Ax.Ay.y) X

C. Reduce each lambda expression to beta-normal form (to be eligible for for partial credit,
show each reduction step). If already in normal form, write “normal form.”

a) [2 pts] (Az.Ay.z) X

b) [2 pts] (AX.AX.X X) Y

c) [3pts] (Az.(Ax. 2) z) (Ay.X Y)

D. [2 pts] Which of the following lambda terms has the same semantics as this bit of OCaml
code: (circle exactly one)

let func x = (funy ->y x)
infuncab

a)(hy.yx)ab

b) (Ax. (Ay. y x) a b)
c)(Ax. (Ay.yXx))ab
d) (x (Ay.yx))ab

11

7. FP & Objects, Tail Recursion [10 pts]

A. [5 pts] Given the Java class Point on the left, write the OCaml encoding of the Point
class on the right. (Hint: make () returns a tuple of 3 functions, as shown in the code at

the bottom of the righthand-side.)

class Point {
private int x=0,y=0;
void set(int x, int y){
this.x = x;
this.y = y;
}
int getX(){return x;}
Int getY(){return y;}
}
Point p = new Point();
p.set(2,6);
int x = p.get(x);

let make () =

let (set,getx,gety) = make ();;
set 2 6;;
let x = getx ();

B. [5 pts] Write a tail-recursive version of the sum function, which sums all elements of a

list, having type int list -> int.

12

