
CMSC330 Spring 2018 Midterm 2
9:30am/ 11:00am/ 3:30pm

Name (PRINT YOUR NAME ​as it appears on gradescope​):

 __

Discussion Time (circle one) 10am 11am 12pm 1pm 2pm 3pm

Instructions

● Do not start this test until you are told to do so!
● You have 75 minutes to take this midterm.
● This exam has a total of 100 points, so allocate 45 seconds for each point.
● This is a closed book exam. No notes or other aids are allowed.
● Answer essay questions concisely in 2-3 sentences. Longer answers are not needed.
● For partial credit, show all of your work and clearly indicate your answers.
● Write neatly. Credit cannot be given for illegible answers.

 Problem Score

1 PL Concepts /9

2 Finite Automata /21

3 Context Free Grammars /20

4 Parsing /17

5 Operational Semantics /10

6 Lambda Calculus /13

7 FP & Objects, Tail Recursion /10

 Total /100

1

1. PL concepts [9 pts]

A. [4 pts] Circle true or false for each of the following (1 point each):

a) True​ ​/ False Any language accepted by an NFA can be accepted by a DFA

b) True / False There are some regexps that do ​not​ have a corresponding DFA

c) True / False Lambda calculus is Turing complete

d) True / False The Y combinator is used to encode numbers and addition

B. [1 pt] In my SmallC interpreter, the token list for string “​1-1​” showed up as

[Tok_Num 1;​ ​Tok_Num -1]​. I was expecting ​[Tok Num 1,​ ​Tok_Minus,
Tok_Num 1].​ This problem is caused by an error in my (circle the right one):

a) Interpreter
b) Lexer
c) Parser
d) Type Checker

C. [4 pts] What is ​printed ​when evaluating the following expression using the CBV

(Call by value) and CBN (Call by name) evaluation strategy?

(fun x -> x; x) (print_string "hi")

CBV CBN

2

2. Finite Automata [21 pts]

A. [4 pts] Consider the following automaton which operates over alphabet {a,b}.

Which of the following are true about it (circle the letter of the statement)?

a. (2 pts) It is an DFA

b. (2 pts) It is minimal

B. [5 pts] Which of the following strings are accepted by this automaton? Circle them.

aababaa abbbaaa bbba bbabbaba aaabbbaabba

3

C. [6 pts] Draw a finite automaton that accepts the same strings as the regular expression

(a|b)+|(ab*c)

D. [6 pts] Convert following NFA to a DFA.

4

3. Context Free Grammars [20 pts]

A. [1 pt] True / False In the following grammar, the ​+ ​operator is left-associative.
 E → E+T | E-T | T
 T → a | b | c | (E)

B. [11 pts] Consider the following CFG, in which ​p​ and ​q​ are terminals, and A and B are
nonterminals.

a. [4 pts] Which of the following strings are accepted? Circle them.

A -> ​p​A​q​ | B
B -> ​p​B | B​q ​| ​pq

Circle: pppqqq pqpq pppq p

b. [3 pts] Give a regular expression that accepts the same strings as the CFG. If this
is not possible, explain why.

c. [4 pts] Show that the CFG is ambiguous.

5

C. [4 pts] Change the following CFG to eliminate left recursion

S -> S ​and​ S | T
T -> ​true​ | ​false

 D. [4 pts] Give a CFG that starts with one or more ​y​ followed by twice as many ​x ​or​ z. ​The
grammar accepts the following strings (and many others): ​yxx​, ​yzz​, ​yzx​, ​yxx​, ​yyxzzx​, ​yyzxzx​,
yyyxxxxxx​, ...

6

4. Parsing [17 pts]

A. [2 pts] Circle whether the following are true or false

a. True / false Recursive descent parsing works bottom-up

b. True / false Recursive descent parsing is a kind of predictive parsing

B. [2 pts] Name two features of a grammar that make it unsuitable for recursive descent
parsing.

Now Consider the following context-free grammar (CFG):

S → A​c​ | ​d​S
A → ​a​BA | ε
B → ​b​B | ​c

C. [1 point] Circle the correct answer about the CFG definition for nonterminal B.

a. B is left recursive
b. B is right recursive
c. B is ambiguous
d. None of the above

D. [4 points] What are the FIRST SETS of each of the nonterminals in the grammar?

7

E. (8 points) Complete the implementation for a recursive-descent parser for the CFG.

exception ParseError of string

let tok_list = ref [];; (* filled in by scanner *)

let ​lookahead​ () =
 match !tok_list with

 [] -> None

 | (h::t) -> Some h

let ​match_tok​ a =
 match !tok_list with

 | (h::t) when a = h -> tok_list := t

 | _ -> raise (ParseError "bad match")

let rec ​parse_S​() =
 if (lookahead() = Some "a") || (lookahead() = Some "c") then

 (parse_A();

 match_tok "c")

 else ​(* FILL IN - 4 pts *)

and ​parse_A​() = ​(* FILL IN - 4 pts *)

and ​parse_B​() =
 if lookahead() = Some "b" then

 (match_tok "b";

 parse_B())

 else if lookahead() = Some "c" then

 match_tok "c"

 else raise (ParseError "bad match")

8

5. Operational Semantics [10 pts]

A. [3 pts] Describe in English what the operator ​myst​ does, or give its usual name (you
have seen it before).

B. [3 pts] Below are incorrect rules for conditionals. Circle the key part of each rule that is
incorrect. Feel free to explain, for clarity.

9

C. [4 pts] The statement ​s​ unless ​e​ will execute statement ​s​ if ​e​ evaluates to ​false ​and
has no effect if ​e​ evaluates to ​true​. Implement the semantics for ​unless​ by filling in the
boxes below. (Like in SmallC, you can assume that expressions have no effect on the
environment.)

10

6. Lambda Calculus [12 pts]

A. [2 pts] Circle all occurrences of ​free variables​ in the following λ-term:

 𝛌x. z (𝛌y. x y) y x

B. [2 pts] Circle whether the following statements are true or false

a. True / False 𝛌x.𝛌y.y x is alpha-equivalent to 𝛌f.𝛌n.f n

b. True / False 𝛌x.𝛌y.y x is alpha-equivalent to (𝛌x.𝛌y.y) x

C. Reduce each lambda expression to beta-normal form (to be eligible for for partial credit,
show each reduction step). If already in normal form, write “normal form.”

a) [2 pts] (𝛌z.𝛌y.z) x

b) [2 pts] (𝛌x.𝛌x.x x) y

c) [3 pts] (𝛌z.(𝛌x. z) z) (𝛌y.x y)

D. [2 pts] Which of the following lambda terms has the same semantics as this bit of OCaml
code: (circle exactly one)

let func x = (fun y -> y x)
in func a b

a) (𝛌y. y x) a b

b) (𝛌x. (𝛌y. y x) a b)

c) (𝛌x. (𝛌y. y x)) a b

d) (x (𝛌y. y x)) a b

11

7. FP & Objects, Tail Recursion [10 pts]

A. [5 pts] Given the Java class ​Point​ on the left, write the OCaml encoding of the ​Point
class on the right. (​Hint​: ​make()​ returns a tuple of 3 functions, as shown in the code at
the bottom of the righthand-side.)

class Point {

 private int x=0,y=0;

 void set(int x, int y){

 this.x = x;

 this.y = y;

 }

 int getX(){return x;}

 Int getY(){return y;}

}

Point p = new Point();

p.set(2,6);

int x = p.get(x);

let make () =

let (set,getx,gety) = make ();;

set 2 6;;

let x = getx ();

B. [5 pts] Write a ​tail-recursive​ version of the ​sum​ function, which sums all elements of a

list, having type ​int list -> int​.

12

