CMSC330 Fall 2025 Quiz 3

Proctoring TA: Name:

Section Number: uID:
Problem 1: Basics [Total 3 pts]
The primary task of a lexer is to check the semantics of a language @

If a DFA accepts a string, then there exists exactly one path from the start to an accepting state for that string @

ONORORORC

The language {a"b"|n > 0} can be generated by a CFG but not accepted by any DFA or NFA @
For some languages, the equivalent DFA may have exponentially more states than the NFA @
NFAs and DFAs accept the same class of languages — regular languages @

In a DFA, for each state (excluding garbage states) and input symbol there is:

@ Exactly one transition G At most one transition /true @ No transition @ At least one transition
Problem 2: NFA to DFA [Total 10 pts]
NFA: DFA:

-0 g

RN 2%
b o

E;
Ey

Scratch Table (for partial credit):

Final?

State

C

(a) Which states are the final (accepting) states?
©s:

®) So

®s)

©s;

So:

So:

E]Z

Ej:

Es:

S]Z

S3:

Ey:

Ey:

[1 pts]

Problem 3: Lexing, Parsing, Interpreting [Total 5 pts]

Write a recursive descent parser that recognizes strings generated by the following grammar:

S -5 xySz|w

This grammar generates strings such as: xywz, Xyxywzz, ... i.e. strings of the form x” y”"wz" where n > 0.

The input is represented as a list of characters (char list).

You have already been given the implementation for parse, the optional functions lookahead and match_tok,
implement the function parse_S such that the examples below function correctly:

parse [’w’] = [1 (* success x) parse [’a’] = (x returns error *)
parse [’x’; ’y?; ’w’; ’2°] = [1 (* success %) parse [’x’; ’y’; ’w’] (* returns error *)
parse [’x’; ’y?; ’x’; ’y’; ’w’; ’z’; ’z°] = [1 (% success *)

let lookahead tokens = | let match_tok a tokens =
match tokens with | match tokens with
| [1 -> raise (ParseError "no tokens") | | h::t when a =h -> ¢t
| h::_ -> h | | _ -> raise (ParseError "bad match")

let parse tokens = match parse_S tokens with
I 00 ->10

| _ -> failwith "failed to parse the input string"

let rec parse_S tokens =

| _->failwith "wrong token. parse error"

Problem 4: CFG Derivation [Total 2 pts]
A grammar is said to be ambiguous if: The lookahead in parsing helps to:

@ It has multiple start symbols @ Optimize token generation

It cannot generate any string e Generate intermediate code

@ It has no production rules @ Predict which rule to apply next

@ A string can have more than one parse tree @ Simplify the grammar

Complete the CFG, such that it generates all even-length strings over X = {a, b, ..., z} (including empty strings)

S —

T — a|blc..|z

