
CMSC330 Fall 2025 Quiz 3

Proctoring TA: Name:

Section Number: UID:

Problem 1: Basics [Total 3 pts]

The primary task of a lexer is to check the semantics of a language T F

If a DFA accepts a string, then there exists exactly one path from the start to an accepting state for that string T F

The language {anbn |n ≥ 0} can be generated by a CFG but not accepted by any DFA or NFA T F

For some languages, the equivalent DFA may have exponentially more states than the NFA T F

NFAs and DFAs accept the same class of languages — regular languages T F

In a DFA, for each state (excluding garbage states) and input symbol there is:

A Exactly one transition B At most one transition /true C No transition D At least one transition

Problem 2: NFA to DFA [Total 10 pts]

0 1

2

3

4

5

c

c

c

ϵ

ϵ

c
d

NFA: DFA:

S0

S1

S2

S3

E1 E2

E3

E4

E5

Scratch Table (for partial credit):
Final? State c d

S0: S1:

S2: S3:

E1: E2:

E3: E4:

E5:

(a) Which states are the final (accepting) states? [1 pts]
A S0 B S1 C S2 D S3

Problem 3: Lexing, Parsing, Interpreting [Total 5 pts]

Write a recursive descent parser that recognizes strings generated by the following grammar:
S → x y Sz | w
This grammar generates strings such as: xywz, xyxywzz, ... i.e. strings of the form x n y nwz n where n ≥ 0.
The input is represented as a list of characters (char list).
You have already been given the implementation for parse, the optional functions lookahead and match_tok,
implement the function parse_S such that the examples below function correctly:

parse [’w’] = [] (* success *) parse [’a’] = (* returns error *)
parse [’x’; ’y’; ’w’; ’z’] = [] (* success *) parse [’x’; ’y’; ’w’] (* returns error *)
parse [’x’; ’y’; ’x’; ’y’; ’w’; ’z’; ’z’] = [] (* success *)
--

let lookahead tokens = | let match_tok a tokens =
match tokens with | match tokens with
| [] -> raise (ParseError "no tokens") | | h::t when a = h -> t
| h::_ -> h | | _ -> raise (ParseError "bad match")

let parse tokens = match parse_S tokens with
| [] -> []
| _ -> failwith "failed to parse the input string"

let rec parse_S tokens =

|_->failwith "wrong token. parse error"

Problem 4: CFG Derivation [Total 2 pts]

A grammar is said to be ambiguous if:

A It has multiple start symbols

B It cannot generate any string

C It has no production rules

D A string can have more than one parse tree

The lookahead in parsing helps to:

A Optimize token generation

B Generate intermediate code

C Predict which rule to apply next

D Simplify the grammar

Complete the CFG, such that it generates all even-length strings over Σ = {a, b, ..., z } (including empty strings)

S →

T → a |b |c ..|z

