CMSC330 Fall 2025 Quiz 1

Proctoring TA:

Section Number:

Name:

ocaml

UID:

Problem 1: Basics

List.length x = (List.length (List.map f x)) for all valid f and x (i.e. assume List.map f x compiles)

if fold_Lleft f a | compiles and results in value v then fold_right (fun x a -> f a x) L a should also result in v

In OCaml the entire function body is a single expression

OCaml lists are immutable. List 2 benefits of immutability in functional programming.

Problem 2: OCaml Typing and Evaluating

[Total 4 pts]

true false

[Total 6 pts]

Give the type for the following functions foo and give what the following function call evaluates to. If there is a type error
in the function, put "TYPE ERROR" for the type, and put "ERROR" for the evaluation. If the function call causes an error for
any reason, put "ERROR" for the evaluation.

(a)
let rec foo 1lst =
match 1lst with

hil::h2::t-> h2 :: hl ::

|_-> 1st;;

foo [1;2;3;4;5] ;;

(b)

let foo f x =f (f x);;

Typeof foo:

foo t

Evaluation:

Typeof foo:

foo (fun x-> [List.length x]) [3;6;9] ;;

Evaluation:

[3 pts]

[3 pts]




Problem 3: Coding [Total 6 pts]

For the following coding question, you may write helper functions, you may use recursion but aren’t required to, you do not
have to use map/fold (however they are still given). You may not use any List module functions, except those provided.
(cons and @ are fine). You may also not use any imperative OCaml. Read the examples carefully.

Given Functions:
let rec map £ 1 = match 1 with
0 ->10

let rec fold_right £ 1 a = match 1 with
[x::xs -> (£ x)::(map

1 ->a
[x::xs -> f x (fold_right f xs a)

[y

xs)

let rec fold_left f a 1 = match 1 with
J->a
[x::xs -> fold_left f (f a x) xs

Define a function fold_if that behaves like fold_left, but takes an additional predicate argument pred : 'acc -> 'a -> bool
During the fold, before applying the function to the current element, pred is checked with the current accumulator and the
current element. If pred evaluates to false, the fold stops and returns the current accumulator.

(* Examples

(* stop when we encounter an element > 10 *)
let pred _acc x = x <= 10 in

let f acc x = acc + x in

fold_if pred f 0 [1;4;6;11;2]

(* returns 11 (1+4+6), stops at 11 *)

(* predicate that depends on accumulator: stop once acc >= 10 *)

let pred_sum acc _x = acc < 10 in

let £ acc x = acc + x in

fold_if pred_sum f O [3;4;5;1]

(* returns 12 (3+4+5). it adds up 3 and 4, making acc to be 7.It gets to the element 5,

checks if acc is greater than 10 (it is not, 7 < 10), then adds 5 (acc is now 12). It then gets to
the element 1 and checks if acc > 10 (it is), which makes pred_sum evaluate to false,

so it immediately returns the current accumulator of 12 *)

(* Write your code below *)
let rec fold_if pred f init 1lst =



