

# CMSC330 Fall 2024 Quiz 3

| Proctoring TA:                                                                                                                                             | Name:                                                                         |                |          | -                  |                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------|----------|--------------------|----------------|
| Section Number:                                                                                                                                            | UID:                                                                          |                |          | _                  |                |
| Problem 1: Context Free Grammars                                                                                                                           | - Derivations                                                                 |                |          |                    | [Total 6 pts]  |
| Consider the following Grammar:                                                                                                                            | $S \rightarrow ASB c$<br>$A \rightarrow aA a$<br>$B \rightarrow bbB \epsilon$ |                |          |                    |                |
| (a) Derive aacbb                                                                                                                                           |                                                                               |                |          |                    | [4 pts]        |
|                                                                                                                                                            |                                                                               |                |          |                    |                |
|                                                                                                                                                            |                                                                               |                |          |                    |                |
|                                                                                                                                                            |                                                                               |                |          |                    |                |
| (b) Is this an ambiguous grammar?                                                                                                                          |                                                                               |                |          |                    | [2 pts]        |
|                                                                                                                                                            | A Yes B No                                                                    |                |          |                    |                |
| Problem 2: Lexing Parsing and Evalu                                                                                                                        | uating                                                                        |                |          |                    | [Total 6 pts]  |
| Given the following CFG, and assuming the <b>Ocaml</b> type system and semantics, at what stage of language processing would each expression <b>fail</b> ? | 1 + 2 - (true and false)                                                      | <b>Lexer</b> L | Parser P | <b>Evaluator E</b> | <b>Valid</b> V |
| Mark <b>'Valid'</b> if the expression would be accepted by the grammar and evaluate successfully. As-                                                      | {2}                                                                           | L              | P        | E                  | V              |
| sume the only symbols allowed are those found                                                                                                              | 0 . 4 . 0                                                                     |                |          | Œ                  | (V)            |

$$E \rightarrow M$$
 and  $E|M$  or  $E|M$   
 $M \rightarrow N + M|N - M|N$   
 $N \rightarrow 1|2|3|4|$  true | false |  $(E)$ 

in the grammar.

| 1 + 2 - (true and false) | Lexer | Parser | E   | Valid |
|--------------------------|-------|--------|-----|-------|
| {2}                      | L     | P      | E   | v     |
| 3 * 1 - 2                | L     | P      | E   | V     |
| 2 and 5                  | L     | P      | E   | V     |
| false                    | L     | P      | E   | V     |
| true and (false)         | (L)   | (P)    | (E) | (V)   |

## **Problem 3: Operational Semantics**

[Total 4 pts]

Consider the following rules for two languages. OCaml will be the meta-language for both. Take note of the order of  $e_1$  and  $e_2$  that is bolded in Language B.

#### **LANGUAGE A**

#### **LANGUAGE B**

$$(int rule) \frac{}{A; n \Rightarrow n}$$

$$(int rule) \frac{}{A; n \Rightarrow n}$$

$$A; e_1 \Rightarrow v_1 \quad A; e_2 \Rightarrow v_2 \quad v_3 = v_1 * v_2$$

$$A; op1 e_1 e_2 \Rightarrow v_3$$

$$A; e_1 \Rightarrow v_1 \quad A; e_2 \Rightarrow v_2 \quad v_3 = v_1 * v_2$$

$$A; e_1 \Rightarrow v_1 \quad A; e_2 \Rightarrow v_2 \quad v_3 = v_1 * v_2$$

$$A; e_1 \Rightarrow v_1 \quad A; e_2 \Rightarrow v_2 \quad v_3 = v_1 * v_2$$

$$A; e_1 \Rightarrow v_1 \quad A; e_2 \Rightarrow v_2 \quad v_3 = v_1 * v_2$$

$$A; e_1 \Rightarrow v_1 \quad A; e_2 \Rightarrow v_2 \quad v_3 = v_1 * v_2$$

$$A; e_1 \Rightarrow v_1 \quad A; e_2 \Rightarrow v_2 \quad v_3 = v_1 * v_2$$

$$A; e_1 \Rightarrow v_1 \quad A; e_2 \Rightarrow v_2 \quad v_3 = v_1 * v_2$$

$$A; e_1 \Rightarrow v_1 \quad A; e_2 \Rightarrow v_2 \quad v_3 = v_1 * v_2$$

Assume we derive meaning through operational semantics and read rules left-to-right. Give the Language B sentence that is semantically the same as the Language A sentence:

### **Problem 4: Type Checking**

[Total 4 pts]

Consider the following type checking rules of OCaml:

$$\frac{G \vdash e_1 : int}{G \vdash e_2 : int} \qquad \frac{G(x) = t}{G \vdash x : t}$$

$$\frac{G \vdash e_1 : int}{G \vdash e_1 : t_1} \qquad \frac{G \vdash e_2 : int}{G \vdash e_1 : t_1} \qquad \frac{G \vdash e_1 : t_1}{G \vdash let \ x = e_1 \ in \ e_2 : t_2}$$

Write a type checking proof for the following expression

let 
$$x = 5$$
 in  $x + 7$