
CMSC330 Fall 2024 Q
.
uiz

Proctoring TA: Name:

Section Number: UID:

Problem 1: Basics [Total 4 pts]

True False
In OCaml, all values are expressions but not all expressions are values T F
everything is an expression, but 2 + 3 is not a value

In OCaml, all expressions are values but not all values are expressions T F
everything is an expression, but 2 + 3 is not a value

map (fun x -> x + 1) a will modify the list a in-place T F
map doesn’t modify anything in place because lists are immutable in OCaml

Having mutable variables can make it hard to reason about how a program runs T F
Side effects occur when we have mutability, this can be difficult to reason about

Having immutable variables can make it easy to reason about how a program runs T F
Its very easy to write mathematical proofs about our program if there is no mutability

A function with type int -> float -> bool returns 2 things: a float and a bool T F
Functions return only 1 thing ever

A function with type int -> bool -> float could be interpreted as returning a bool -> float function T F
Currying allows for this interpretation

let f x = x + 3 is an example of a higher order function T F
this function has type int -> int so it is not

let f x = x 3 is an example of a higher order function T F
because we use x as if it was function name, OCaml will say this is a (int -> ’a) -> ’a type

An OCaml function can return different types depending on how it’s called T F
A function can only return 1 type, (or 1 polymorphic type)

let x = 3 in let x = 4 in x is an example of variable shadowing T F
This returns 4 and variables are immutable so shadowing does occur

let x = 3 in let y = 4 in y + x is an example of variable shadowing T F
there is no two variables with the same name so no shadowing occurs

let x = 3 in let y = 4 in y is an example of variable shadowing T F
there is no two variables with the same name so no shadowing occurs

1



Problem 2: OCaml Typing and Evaluating [Total 6 pts]

Give the type for the following functions f and give what the following function call evaluates to. If there is a type error in
the function, put "TYPE ERROR" for the type, and put "ERROR" for the evaluation. If the function call does not follow the
type of f, put "ERROR" for the evaluation.

(a) [2 pts]

let f x y = match x with
[] -> []

|x::xs -> y :: xs ;;

f [] [1;2;3] ;;

Typeof f:
’a list -> ’a -> ’a list

Evaluation:
[]

f takes in 2 arguments. We know that x will be a list, and y will be an element of x. We have no operations that force a type.
Hence we get ’a list -> ’a -> ’a list

(b) [2 pts]

let f x y = match x with
[] -> [1]

|x::xs -> y :: xs ;;

f [] [1;2;3] ;;

Typeof f:
int list -> int -> int list

Evaluation:
ERROR

f takes in 2 arguments. We know that x will be a list, and y will be an element of x. We know that y::xs will have to match
the type of [1] so we get int list -> int -> int list

(c) [2 pts]

let f x y = match x with
[] -> [14]

|x::xs -> y :: xs ;;

f [1] [1;2;3] ;;

Typeof f:
int list -> int -> int list

Evaluation:
ERROR

f takes in 2 arguments. We know that x will be a list, and y will be an element of x. We know that y::xs will have to match
the type of [14] so we get int list -> int -> int list

(d) [2 pts]

let f x y = match x with
[] -> [4]

|x::xs -> y :: xs ;;

f [] [1;2;3] ;;

Typeof f:
int list -> int -> int list

Evaluation:
ERROR

f takes in 2 arguments. We know that x will be a list, and y will be an element of x. We know that y::xs will have to match
the type of [4] so we get int list -> int -> int list

(e) [2 pts]

2



let f a b =
if b <> false then 1.0
else a + 2.0 ;;

f 2.0 false;;

Typeof f:
ERROR

Evaluation:
ERROR

We try adding 2.0 with the + operator, but we need to use the +. operator. This is an error

(f) [2 pts]

let f a b =
if b = "false" then 1
else a + 2 ;;

f 2 "true";;

Typeof f:
int -> string -> int

Evaluation:
4

f takes in 2 arguments. We know that a will be added to 2, and b is being compared to the string "false" so we get int ->
string -> int

(g) [2 pts]

let f a b =
if b > 5 then a
else true ;;

f 2.0 false;;

Typeof f:
bool -> int -> bool

Evaluation:
ERROR

f takes in 2 arguments. We know that a will have to match the type of true, and b is being compared to 5 so we get bool
-> int -> bool

(h) [2 pts]

let f a b =
if b > false then a
else 2.3 ;;

f 2.0 false;;

Typeof f:
float -> bool -> float

Evaluation:
2.3

f takes in 2 arguments. We know that a will have to match the type of 2.3, and b is being compared to false so we get float
-> bool -> float

(i) [2 pts]

let rec f g lst = match lst with
[] -> []

|x::xs -> (x, g x)::(f g xs) ;;

f (fun x -> x mod 2 = 1) [1;2;3] ;;

Typeof f:
(’a -> ’b) -> ’a list -> (’a * ’b) list

Evaluation:
[(1, true); (2, false); (3, true)]

f takes in 2 arguments. We know that g is a function that will be called with x so we get (’a -> ’b) -> ’a list ->
(’a * ’b) list

(j) [2 pts]

3



let rec f g lst = match lst with
[] -> []

|x::xs -> (g x, x)::(f g xs) ;;

f (fun x -> x mod 2 = 0) [1;2;3] ;;

Typeof f:
(’a -> ’b) -> ’a list -> (’b * ’a) list

Evaluation:
[(false, 1); (true, 2); (false, 3)]

f takes in 2 arguments. We know that g is a function that will be called with x so we get (’a -> ’b) -> ’a list ->
(’a * ’b) list

(k) [2 pts]

let rec f g lst = match lst with
[] -> []

|x::xs -> (g x, x)::(f g xs) ;;

f (fun x -> x +. 2.0) [1.0;2.0;3.0];;

Typeof f:
(’a -> ’b) -> ’a list -> (’b * ’a) list

Evaluation:
[(3., 1.); (4., 2.); (5., 3.)]

f takes in 2 arguments. We know that g is a function that will be called with x so we get (’a -> ’b) -> ’a list ->
(’a * ’b) list

(l) [2 pts]

let rec f g lst = match lst with
[] -> []

|x::xs -> (x, g x)::(f g xs) ;;

f (fun x -> x *. 2.0) [1.0;2.0;3.0];;

Typeof f:
(’a -> ’b) -> ’a list -> (’a * ’b) list

Evaluation:
[(1., 2.); (2., 4.); (3., 6.)]

f takes in 2 arguments. We know that g is a function that will be called with x so we get (’a -> ’b) -> ’a list ->
(’a * ’b) list

Problem 3: OCaml Expressions [Total 4 pts]

Write an expression that would have the following types.

(a) [2 pts]

’a -> ’a -> bool list fun a b -> [a = b]

(b) [2 pts]

(’a -> ’a) -> ’a -> int fun f a -> if (f a) = a then 3 else 5

(c) [2 pts]

float -> ’a -> (’a * float) fun a b -> (b,a +. 2.)

(d) [2 pts]

string -> ’a -> (’a * float * ’a) fun s a -> (a, (float_of_string s), a)

4



(e) [2 pts]

bool -> int -> (bool * int) list fun b i -> [b>true,i+3]

(f) [2 pts]

(int -> ’a) -> ’b -> ’a fun f a -> f 3

(g) [2 pts]

(’a -> ’b) -> ’a -> ’b fun f b -> f b

(h) [2 pts]

(’a -> ’b -> ’c) -> ’a -> ’b -> ’c fun f a b -> f a b

Problem 4: Coding [Total 6 pts]

Write a function encode that takes a int list and returns a string list, which consists of the string "1" repeated by
each number in the int list. You may assume that all values in the input list are >= 0.

You do NOT have to use map or fold, but their definitions are given if you want to use them.
You can write helper methods.

(* Examples
encode [0;1;2;3] = ["";"1";"11";"111"]
encode [0;0;3] = ["";"";"111"]

*)

(* Write your code below *)

let rec map f l = match l with
[] -> []

|x::xs -> (f x)::(map f xs)

let rec fold f a l = match l with
[] -> a

|x::xs -> fold f (f a x) xs

let rec encode lst =
let rec repeat n =

if n = 0 then
""

else
"1" ^ repeat (n-1) in

map repeat lst

5


