
CMSC330 Fall 2024 Q
.
uiz

Proctoring TA: Name:

Section Number: UID:

Problem 1: Basics [Total 4 pts]

True False
In OCaml, all values are expressions but not all expressions are values T F

Having mutable variables can make it hard to reason about how a program runs T F

let f x = x + 3 is an example of a higher order function T F

An OCaml function can return different types depending on how it’s called T F

Problem 2: OCaml Typing and Evaluating [Total 6 pts]

Give the type for the following functions f and give what the following function call evaluates to. If there is a type error in
the function, put "TYPE ERROR" for the type, and put "ERROR" for the evaluation. If the function call does not follow the
type of f, put "ERROR" for the evaluation.

(a) [2 pts]

let f x y = match x with
[] -> []

|x::xs -> y :: xs ;;

f [] [1;2;3] ;;

Typeof f:

Evaluation:

(b) [2 pts]

let f a b =
if b > 5 then a
else true ;;

f 2.0 false;;

Typeof f:

Evaluation:

(c) [2 pts]

let rec f g lst = match lst with
[] -> []

|x::xs -> (x, g x)::(f g xs) ;;

f (fun x -> x mod 2 = 1) [1;2;3] ;;

Typeof f:

Evaluation:

1



Problem 3: OCaml Expressions [Total 4 pts]

Write an expression that would have the following types.

(a) [2 pts]

’a -> ’a -> bool list

(b) [2 pts]

(’a -> ’a) -> ’a -> int

Problem 4: Coding [Total 6 pts]

Write a function encode that takes a int list and returns a string list, which consists of the string "1" repeated by
each number in the int list. You may assume that all values in the input list are >= 0.

You do NOT have to use map or fold, but their definitions are given if you want to use them.
You can write helper methods.

(* Examples
encode [0;1;2;3] = ["";"1";"11";"111"]
encode [0;0;3] = ["";"";"111"]

*)

(* Write your code below *)

let rec map f l = match l with
[] -> []

|x::xs -> (f x)::(map f xs)

let rec fold f a l = match l with
[] -> a

|x::xs -> fold f (f a x) xs

let rec encode lst =

2


