
CMSC330 - Organization of Programming Languages
Fall 2024 - Final

CMSC330 Course Staff
University of Maryland

Department of Computer Science

Name:

UID:

I pledge on my honor that I have not given or received any unauthorized assistance on this assignment/examination

Signature:

Ground Rules

• Please write legibly. If we cannot read your answer you will not receive credit.
• You may use anything on the accompanying reference sheet anywhere on this exam
• Please remove the reference sheet from the exam
• The back of the reference sheet has some scratch space on it. If you use it, you must turn in your scratch work
• You may not leave the room or hand in your exam within the last 10 minutes of the exam
• If anything is unclear, ask a proctor. If you are still confused, write down your assumptions in the margin

Question Points
P1. 10
P2. 10
P3. 15
P4. 6
P5. 4
P6. 6
P7. 6
P8. 6
P9. 10
P10. 3
P11. 8
P12. 16
Total 100

1



Problem 1: Concepts [Total 10 pts]

True False
Some Buffer Overflow vulnerabilities can be prevented by having a type-safe type system T F

In Rust, null pointer exceptions will not occur T F

If you are at some state B in an FSM, the history of your path determines where you go next T F

Context Free Grammars can recognize strings with balanced parenthesis T F

The LL(k) parser we used in project 4 runs in little-o(n) time where n is the number of tokens. T F

Stop and Copy Garbage collection will not clean up cyclic data structures T F

The rules of references that Rust uses helps prevents double frees T F

Both Ocaml and Rust are statically typed T F

The best case runtime of the tokenize function from project 4 is polynomial. T F

In Rust, a reference’s lifetime is part of its type T F

OCaml is Turing complete which means it can solve more problems than Rust T F

If a language is well typed, it must also be well-defined T F

In Rust, a reference’s lifetime is not part of its type T F

If a language is well-typed, it is possible for it to not be well-defined T F

Both Ocaml and Rust are dynamically typed T F

Rust is Turing complete which means it can solve more problems than Ocaml T F

Regular Expressions can recognize strings of arbitrary length with balanced parenthesis T F

2



Problem 2: Regex [Total 10 pts]

If you run ping google.com -c 2 on the command line, you get an echo response from your destination sending 2
network packets. It can be useful to see if you have an active internet connection or if a website is down. An example ping
command can return:

PING google.com (192.168.255.255) 56 bytes of data

64 bytes from 192.168.255.255: icmp_seq=1 ttl=60 time=8.57 ms

64 bytes from 192.168.255.255: icmp_seq=2 ttl=60 time=2.61 ms

--- google.com ping statistics ---

2 packet transmitted, 2 received, 0% packet loss, time 1003ms

Write a regex that describes each part of this echoed response:

(a) IP Address [2 pts]
IP Addresses appear multiple times in the following lines. 192.168.255.255 is an IP address. Valid IP addresses will look like
’xxx.xxx.xxx.xxx’ where ’xxx’ is from 0-255 (inclusive). Write the regex for the ’xxx’ part (the range of 0-255, inclusive). This
regex will be used in the later parts as IP.

( [0 − 1] [0 − 9] [0 − 9] |2[0 − 4] [0 − 9] |25[0 − 5])

(b) Destination Summary - This is the first line in the example [2 pts]

Example: PING google.com (192.168.255.255) 56 bytes of data

It summarizes where you are pinging and how many bytes the sent data will be. The domain name will be at least one
lowercase letter followed by any number of dots (.) and lowercase letters with no consecutive dots (it may end in a dot).
Only 56 or 64 bytes of data will be sent.

[a-z](\.?[a − z ]+) ∗ \.? (56|64)

(c) Received Data [2 pts]
The second and third lines in the example are instances of this. Received data will receive 32 or 64 bytes from an IP address.
icmp seq is the sequence number of the packet (≥ 0), ttl will also be ≥ 0. Time will be any number ≥ 0 with 2 digits after
the decimal. You will not need to check if the sequence is in order, or if the IP address is consistent across responses.

(32| 64) bytes from IP: icmp seq=[0-9]+ ttl=[0-9]+ time=[0-9]+\. [0-9]{2} ms

(d) Statistics [3 pts]
The last line in the example. The statistics line will have how many packets were transmitted (≥ 0), how many were received
(≥ 0), the percent packet loss (0 − 100 inclusive), and the time (≥ 0). Time in this response does not include decimals and
miliseconds. You don’t need to check if the math is right.

[0-9]+ packet transmitted, [0-9]+ received ([0-9][0-9]?|100)% packet loss, time [0-9]+ms

3



If you run ping google.com -c 2 on the command line, you get an echo response from your destination sending 2
network packets. It can be useful to see if you have an active internet connection or if a website is down. An example ping
command can return:

PING google.com (567.451.701.701) 56 bytes of data

64 bytes from 567.451.701.701: ttl=60 icmp_seq=1 time=8.57 ms

64 bytes from 567.451.701.701: ttl=60 icmp_seq=2 time=2.61 ms

--- google.com ping statistics ---

2 packet transmitted, 2 received, 0% packet loss, time 1003ms

Write a regex that describes each part of this echoed response:

(e) IP Address [2 pts]
IP Addresses appear multiple times in the following lines. 567.168.255.990 is an IP address. For our purposes, valid IP ad-
dresses will look like ’xxx.xxx.xxx.xxx’ where ’xxx’ is from 400-742 (inclusive). Write the regex for the IP address here and then
in each following location where it should appear write: IP

( [4 − 6] [0 − 9] [0 − 9] |7[0 − 3] [0 − 9] |74[0 − 2]) (\.( [4 − 6] [0 − 9] [0 − 9] |7[0 − 3] [0 − 9] |74[0 − 2])){3}

(f) Destination Summary [2 pts]
This is the first line in the example. It summarizes where you are pinging and how many bytes the sent data will be. The do-
main name will be at least one lowercase letter followed by any number of dots (.) and lowercase letters with no repeating
dots (it may end in a dot). Only 56 or 64 bytes of data will be sent.

PING [a-z](\.[a − z ]+) ∗ \.? I P (64|56) bytes of data

(g) Received Data [2 pts]
The second and third lines in the example are instances of this. Received data will receive 32 or 64 bytes from an IP address.
ttl is (≥ 0), icmp seq will also be ≥ 0. Time will be any number ≥ 0 with 2 digits after the decimal. You will not need to
check if the sequence is in order, or if the IP address is consistent across responses.

(32|64) bytes from IP: ttl=[0-9]+ icmp seq=[0-9]+ time=[0-9]+\.[0 − 9]{2}ms

(h) Statistics [3 pts]
The last line in the example. The statistics line will have how many packets were transmitted (≥ 0), how many were received
(≥ 0), the percent packet loss (0 − 100 inclusive), and the time (≥ 0). Time in this response does not include decimals and
miliseconds. You don’t need to check if the math is right.

[0-9]+ packet transmitted, [0-9]+ received ([0-9][0-9]?|100)% packet loss, time [0-9]+ms

4



Problem 3: FSM [Total 15 pts]

(a) Convert the below NFA to a DFA. [10 pts]
Draw a box around your final answer.

0

1

2

3

Scratch Space:

b

a

b

b

ϵ

a

aϵ ϵ
a

0

0, 1, 2, 3

0, 2, 3

a

a

b

b

a

b

(b) Write a CFG that describes strings accepted by the NFA above. [5 pts]

S → bS | aT
T → aT |bT | ϵ

(c) Convert the below NFA to a DFA. [10 pts]
Draw a box around your final answer.

0

1

2

3

Scratch Space:

y

x

y

y

ϵ

x

xϵ ϵ
x

0

0, 1, 2, 3

0, 2, 3

x

x

y

y

x

y

(d) Write a CFG that describes strings accepted by the NFA above. [5 pts]

S → y S | xT
T → xT |yT | ϵ

5



Problem 4: OCaml Typing [Total 5 pts]

Give the type of the variable ’r’. If there is a type error, put ”ERROR”

let e a b =

fold_left (fun x y -> a x y) true (1.2 :: b)

(bool -> float -> bool) -> float list -> bool

let e =

fun y ->

fun z ->

map y (2 :: z)

(int -> ’b) -> int list -> ’b list

let foo a = fun b -> map a (map b [1;2;3])

(’a -> ’b) -> (int -> ’a) -> ’b list

let foo a b c = if a (b c) then

c

else

c

(’b -> bool) -> (’a -> ’b) -> ’a -> ’a

Problem 5: Evaluation [Total 6 pts]

Evaluate the following OCaml expressions. It there is a compilation error, put ”ERROR”

let foo a = fun b -> map a (map b [1;2;3]) in

foo (fun x -> -x) (fun y -> y * 4)

[-4;-8;-12]

let foo a b c = if a (b c) then

c

else

c

in foo (fun a -> 0 ) (fun b -> b) true

ERROR

let e a b =

fold_left (fun x y -> a x y) true (1.2 :: b)

in

e (fun x -> x > 2.5) [3.14]

ERROR

let e =

fun y ->

fun z ->

map y (2 :: z)

in

e (fun x -> x + 1) [4; 3]

[3;5;4]

6



Problem 6: Property Based Testing [Total 10 pts]

Consider an attempted (buggy!) implementation of thedouble up and dance function from project 6. double up and dance

should create a vector that contains duplicates of each item in the input slice, with the second item in the slice added to
the fifth if the duplicated vector is longer than 4 elements. It then returns the created vector.

pub fn double_up_and_dance(slice: &[i32]) -> Vec<i32> {

let mut ret = Vec::with_capacity(slice.len() * 2);

for &elem in slice {

ret.push(elem);

ret.push(elem);

}

if let Some(val) = ret.get_mut(5) {

*val += slice[0];

}

ret

}

Consider the property p :
The 5th element of the double up and dance vector will be greater than the 2nd element of the input slice (if they exist).

Is p a valid property? Yes No

Suppose we wanted to write this test. We would encode the property as the following:

fn test_prop(v in prop::collection::vec(usize,1..10)){

//will generate random usize vectors of lengths 1 through 10

if v.len() < 3{

assert!(true)

}else{

assert!(double_up_and_dance(&v).get(5).unwrap() > v.get(2).unwrap())

}

}

Is test prop a correct encoding of the property p? Yes No

If we test this property on the provided implementation of double up and dance, will it ever assert false?

Y Yes

N No

7



Problem 7: Interpreters [Total 6 pts]

Given the following CFG, at what stage of language processing would each expression fail?
Mark ‘Valid’ if the expression would be accepted by the grammar and evaluate properly. Assume the only symbols allowed
are those found in the grammar. Choose only one choice for each expression.
Note: For expressions that result in an infinite loop, consider them to fail at the evaluator step.

E -> LX.E | E E | (E) | X

X -> c

For all c ∈ X , c is a lowercase English character

Lexer Parser Evaluator Valid
LZ.a L P E V

Lx.(Ly.x y) L P E V

x ((Ld.e y) e L P E V

(La.(Ly.(e e) Ly.(y y))) L P E V

(Lt.(Lx.(t y x)).z) L P E V

(Lx. x x) (Lx. x x) L P E V

Lx.a L P E V

(Lx. x x) (La. a a) L P E V

Lx.y.(Ly.x y) L P E V

(La.(Ly1.(e e) Ly2.(y2 y2)) L P E V

(Lt.(Lx.(t (y x))) z) L P E V

8



Problem 8: Type Checking [Total 16 pts]

Consider the following Typing Rules for Ocaml:

G ⊢ true : bool G ⊢ false : bool G ⊢ n : int

G ⊢ x : G (x )
G ⊢ e1 : i nt G ⊢ e2 : i nt + = (i nt , i nt , i nt )

G ⊢ e1 + e2 : i nt

G ⊢ e1 : t1 G , x : t1 ⊢ e2 : t2
G ⊢ l et x = e1 in e2 : t2

G ⊢ e1 : bool G ⊢ e2 : t G ⊢ e3 : t
G ; i f e1 t hen e2 el se e3 : t

Write a type-checking proof for the expression

let x = true in if x then 4 else 5 + 7

G ⊢ t r ue : bool
G , x : bool ⊢ x : G (x ) G , x : bool ⊢ 4 : i nt

G , x : bool ⊢ 5 : i nt G , x : bool ⊢ 7 : i nt
+=(int,int,int)

G , x : bool ⊢ 5 + 7 : i nt
G , x : bool ⊢ if x then 4 else 5 + 7 : i nt

G ⊢ let x = true in if x then 4 else 5 + 7 : i nt

Write a type-checking proof for the expression

if let x = false in if x then 9 + 1 else 2

G ⊢ f al se : bool
G , x : bool ⊢ x : G (x )

G , x : bool ⊢ 9 : i nt G , x : bool ⊢ 1 : i nt
+=(int,int,int)

G , x : bool ⊢ 9 + 1 : i nt G , x : bool ⊢ 2 : i nt
G , x : bool ⊢ if x then 9+1 else 2 : i nt

G ⊢ let x = false in if x then 9+1 else 2 : i nt

9



Problem 9: Lambda Calculus [Total 10 pts]

(a) Reduce [6 pts]
Reduce the following lambda expression. Show every step.

(λc . c d (λa . a)) (λb . (λc . (λa . d b)))

(λc . c d (λa . a)) (λb . (λc . (λa . d b)))
((λb . (λc . (λa . d b))) d (λa . a))
((λc . (λa . d d )) (λa . a))

(λa . d d )

(λx . (λc . cx )) (cc) (λb . (λa . a b)))

(λx .(λc .cx )) (cc) (λb .(λa .ab)))
(λa .(λx .xa)) (cc) (λb .(λa .ab))
(λx .x (cc)) (λb (La .ab))
(λb .(λa .ab)) (cc)
(λa .a (cc))

10



(b) Free Variables: [2 pts]

Circle the free variables in the expression below:

(λa .(λc .a b )) ((λb .(λa .b)) ( a a (λa . c )))
((λa .(λc .a)) (λb .(λa .b c )) ( a a (λa . c )))

(c) Alpha Equivalence: [2 pts]

Which of the following are alpha equivalent to the expression (λb .(λa .b) (ca)) ? Select all that apply.

A (λz .(λy .z ) (x y ))
B (λa .(λa .a) (ca))
C (λa .(λb .a) (ca))
D (λb .(λc .b) (ca))

11



Problem 10: Garbage Collection [Total 3 pts]

Suppose you have the following memory diagram. Select the correct representation of the stack and heap after the mark
and sweep garbage collection technique is run after popping v4 off the stack.

heap
Stack

V1

v2

v3
BA C

D

v4

E
F

A

heap
Stack

V1

v2

v3
B C

D

B

heap
Stack

V1

v2

v3
B C

D E

C

heap
Stack

V1

v2

v3
B C

D E
F

D

heap
Stack

V1

v2

v3
BA C

D E
F

E None of the above

12



Problem 11: Ownership and Lifetimes [Total 8 pts]

fn main(){

let mut x = 4;

let y = &mut x;

println!("{x},{y}");

}

Does the code compile? Y Yes N No

If no, explain why not in one sentence:

println cannot borrow immut while y is borrow mut

fn main(){

let x = String::from("bye");

let y = String::from("farewell");

let mut z = &x;

z = y;

println!("{x},{z}")

}

Does the code compile? Y Yes N No

If no, explain why not in one sentence:

fn main(){

let x = String::from("hello");

let mut y = x;

y.push_str(" world!");

println!("{y}");

}

Does the code compile? Y Yes N No

If no, explain why not in one sentence:

struct Thing{

v1:usize,

v2:String

}

fn main(){

let mut x = Thing{v1:4,v2:String::from("hi")};

let y = &mut x;

y.v2.push_str(" bye");

let z = y.v2;

println!("{},{z}",x.v1)

}

Does the code compile? Y Yes N No

If no, explain why not in one sentence:

y.v2 tries to move ownership of a borrowed value

13



Problem 12: Coding [Total 18 pts]

(a) OCaml [? pts]
Given an int list list, return true if the first column (the first element in each list) is in descending order, and false
otherwise. Assume the matrix is guaranteed to have equal height and width (m x m matrix) and non-empty (m > 0). If items
are equal, that is not descending (i.e. a column of [1;1;0] is not descending).

ex. ex

[[1;2;3;]; [[7;8;9];

[4;5;6]; => false [4;5;6]; => true

[7;8;9]] [1;6;3]]

let rec decending mtx =

let f::t = map (fun x::_ -> x) mtx in

let r,_ = fold (fun (a,b) x -> (x,(x < a) && b)) (f,true) t in

r

let rec accending mtx =

let f::t = map (fun x::_ -> x) mtx in

let r,_ = fold (fun (a,b) x -> (x,(x > a) && b)) (f,true) t in

r

(b) Rust [? pts]
Given an Vec<Vec<u32>>, return true if the first column (the first element in each list) is in descending order, and false
otherwise. Assume the matrix is guaranteed to have equal height and width (m x m matrix) and non-empty (m > 0). If items
are equal, that is not descending (i.e. a column of [1;1;0] is not descending).

ex. ex

vec![vec![1,2,3], vec![vec![7,8,9],

vec![4,5,6], => false vec![4,5,6], => true

vec![7,8,9]] vec![1,6,3]]

fn decending(v:Vec<Vec<u32>>)->bool{

let mut r = v.get(0).unwrap().get(0).unwrap();

for i in &v[1..]{

if i.get(0).unwrap() < r{

r = i.get(0).unwrap()

} else{

return false;

}

};

true

}

fn ascending(v:Vec<Vec<u32>>)->bool{

let mut r = v.get(0).unwrap().get(0).unwrap();

for i in &v[1..]{

if i.get(0).unwrap() > r{

r = i.get(0).unwrap()

} else{

return false;

}

};

true

}

14



Cheat Sheet
OCaml
( * Map and Fold * )
( * ( ’ a −> ’ b ) −> ’ a l i s t −> ’ b l i s t * )
l e t rec map f l = match l with

[ ] −> [ ]
| x : : xs −> ( f x ) : : ( map f xs )

( * ( ’ a −> ’ b −> ’ a ) −> ’ a −> ’ b l i s t −> ’ a * )
l e t rec f o l d l e f t f a l = match l with

[ ] −> a
| x : : xs −> f o l d l e f t f ( f a x ) xs

( * ( ’ a −> ’ b −> ’ b ) −> ’ a l i s t −> ’ b −> ’ b * )
l e t rec f o l d r i g h t f l a = match l with

[ ] −> a
| x : : xs −> f x ( f o l d r i g h t f xs a )

( * Regex in OCaml * )
Re . Posix . re : s t r i n g −> regex
Re . compile : regex −> compiled regex

Re . exec : compiled regex −> s t r i n g −> group
Re . execp : compiled regex −> s t r i n g −> bool
Re . exec opt : compiled regex −> s t r i n g −> group option

Re . matches : compiled regex −> s t r i n g −> s t r i n g l i s t

Re . Group . get : group −> i n t −> s t r i n g
Re . Group . get opt : group −> i n t −> s t r i n g option

( * OCaml Function Types * )
: : − : ’ a −> ’ a l i s t −> ’ a l i s t

@ −: ’ a l i s t −> ’ a l i s t −> ’ a l i s t

+ , − , * , / − : i n t −> i n t −> i n t
+ . , − . , * . , / . − : f l o a t −> f l o a t −> f l o a t

&&, | | − : bool −> bool −> bool
not − : bool −> bool

ˆ − : s t r i n g −> s t r i n g −> s t r i n g

=> ,> ,= ,< ,<= : − ’ a −> ’ a −> bool

Structure of Regex
R → ∅

| σ
| ϵ
| RR
| R |R
| R ∗

Regex
* zero or more repetitions of the preceding character or group
+ one or more repetitions of the preceding character or group
? zero or one repetitions of the preceding character or group
. any character
r1 |r2 r1 or r2 (eg. a|b means ’a’ or ’b’)
[abc] match any character in abc

[ˆr1] anything except r1 (eg. [ˆabc] is anything but an ’a’, ’b’, or ’c’)
[r1-r2] range specification (eg. [a-z] means any letter in the ASCII range of a-z)
{n} exactly n repetitions of the preceding character or group
{n,} at least n repetitions of the preceding character or group
{m,n} at least m and at most n repetitions of the preceding character or group
ˆ start of string
$ end of string
(r1) capture the pattern r1 and store it somewhere (match group in Python)
\d any digit, same as [0-9]
\s any space character like \n, \t, \r, \f, or space

15



NFA to DFA Algorithm (Subset Construction Algorithm)
NFA (input): (Σ,Q , q0, Fn , δ), DFA (output): (Σ, R , r0, Fd , δn )

R ← {}
r0 ← ϵ − closure(σ, q0)
while \ an unmarked state r ∈ R do

mark r
for all a ∈ Σ do

E ← move(σ, r , a)
e ← ϵ − closure(σ, E )
if e < R then

R ← R ∪ {e}
end if
σn ← σn ∪ {r , a, e}

end for
end while
Fd ← {r | \s ∈ r with s ∈ Fn }

Rust
// Vectors
l e t vec = Vec : : new ( ) ; // makes a new vector
l e t vec1 = vec ! [ 1 , 2 , 3 ]

vec . push ( ele ) ; // Pushes the element ’ ele ’
// to end of the vector ’ vec ’

vec . get ( x ) ; // returns the xth index of the
// vec in an option , with Some( ele )
// Some( ele ) i f i t e x i s t s
// and None i f i t doesn ’ t e x i s t

// S t r i n g s
l e t s t r i n g = S t r i n g : : from ( ” Hello ” ) ;

s t r i n g . push str (& s t r ) ; // appends the s t r
// to s t r i n g

vec . t o i t e r ( ) ; // returns an i t e r a t o r for vec

s t r i n g . chars ( ) // returns an i t e r a t o r of chars
// over the a s t r i n g

i t e r . rev ( ) ; // reverses an i t e r a t o r s d i r e c t i o n

i t e r . next ( ) ; // returns an Option of the next
// item in the i t e r a t o r .

s t r u c t Bui ld ing{ // example of s t r u c t
name : Str ing ,
f l o o r s : i32 ,
locat ionx : f32 ,
locat iony : f32 ,

}

enum Option<T>{ Some( T ) ; None } //enum Option type
option . unwrap ( ) ; // returns the item in an Option or

// panics i f None

i f l e t x = option { . . . } // assigns x to the element
// in the option i f i t i s Some

16


