
CMSC330 - Organization of Programming Languages
Fall 2024 - Final

CMSC330 Course Staff
University of Maryland

Department of Computer Science

Name:

UID:

I pledge on my honor that I have not given or received any unauthorized assistance on this assignment/examination

Signature:

Ground Rules

• Please write legibly. If we cannot read your answer you will not receive credit.
• You may use anything on the accompanying reference sheet anywhere on this exam
• Please remove the reference sheet from the exam
• The back of the reference sheet has some scratch space on it. If you use it, you must turn in your scratch work
• You may not leave the room or hand in your exam within the last 10 minutes of the exam
• If anything is unclear, ask a proctor. If you are still confused, write down your assumptions in the margin

Question Points
P1 10
P2. 10
P3. 15
P4. 6
P5. 4
P6. 6
P7. 6
P8. 6
P9. 10
P10. 3
P11. 8
P12. 16
Total 100

1

Problem 1: Concepts [Total 10 pts]

True False
Some Buffer Overflow vulnerabilities can be prevented by having a type-safe type system T F

If you are at some state B in an FSM, the history of your path determines where you go next T F

Context Free Grammars can recognize strings with balanced parenthesis T F

The best case runtime of the tokenize function from project 4 is polynomial. T F

Stop and Copy Garbage collection will not clean up cyclic data structures T F

The rules of references that Rust uses help prevents double frees T F

Both Ocaml and Rust are statically typed T F

In Rust, null pointer exceptions will not occur T F

OCaml is Turing complete which means it can solve more problems than Rust T F

If a language is well-typed, it must also be well-defined T F

2

Problem 2: Regex [Total 10 pts]

If you run ping google.com -c 2 on the command line, you get an echo response from your destination sending 2
network packets. It can be useful to see if you have an active internet connection or if a website is down. An example ping
command can return:

PING google.com (192.168.255.255) 56 bytes of data

64 bytes from 192.168.255.255: icmp_seq=1 ttl=60 time=8.57 ms

64 bytes from 192.168.255.255: icmp_seq=2 ttl=60 time=2.61 ms

--- google.com ping statistics ---

2 packet transmitted, 2 received, 0% packet loss, time 1003ms

Write a regex that describes each part of this echoed response:

(a) IP Address [2 pts]
IP Addresses appear multiple times in the following lines. 192.168.255.255 is an IP address. Valid IP addresses will look like
’xxx.xxx.xxx.xxx’ where ’xxx’ is from 0-255 (inclusive). Write the regex for the ’xxx’ part (the range of 0-255, inclusive). This
regex will be used in the later parts as IP.

IP =
(b) Destination Summary - This is the first line in the example [2 pts]

Example: PING google.com (192.168.255.255) 56 bytes of data

It summarizes where you are pinging and how many bytes the sent data will be. The domain name will be at least one
lowercase letter followed by any number of dots (.) and lowercase letters with no consecutive dots (it may end in a dot).
Only 56 or 64 bytes of data will be sent.

PING \(IP(\.IP){3}\) bytes of data

(c) Received Data - The second and third lines in the example are instances of this [2 pts]

Example: 64 bytes from 192.168.255.255: icmp_seq=1 ttl=60 time=8.57 ms

Example: 64 bytes from 192.168.255.255: icmp_seq=2 ttl=60 time=2.61 ms

Received data will receive 32 or 64 bytes from an IP address. icmp seq is the sequence number of the packet (≥ 0), ttl will
also be ≥ 0. Time will be any number ≥ 0 with 2 digits after the decimal. You will not need to check if the sequence is in
order, or if the IP address is consistent across responses.

bytes from \(IP(\.IP){3}\): icmp seq= ttl= time= ms

(d) Statistics - The last line in the example [3 pts]

Example: 2 packet transmitted, 2 received, 0% packet loss, time 1003ms

The statistics line will have how many packets were transmitted (≥ 0), how many were received (≥ 0), the percent packet
loss (0− 100 inclusive), and the time (≥ 0). Time in this response does not include decimals. You don’t need to check if the
math is right.

packets transmitted, received, % packet loss, time ms

3

Problem 3: FSM [Total 15 pts]

(a) Convert the below NFA to a DFA. [10 pts]
Draw a box around your final answer.

0

1

2

3

Scratch Space:

b

a

b

b

ϵ

a

aϵ ϵ
a

(b) Write a CFG that describes strings accepted by the NFA above. [5 pts]

4

Problem 4: OCaml Typing [Total 6 pts]

Give the type of the function ’foo’. If there is a type error, put ”ERROR”

let foo a = fun b -> map a (map b [1;2;3]) let foo a b c -> if a (b c) then

c

else

c

Problem 5: Evaluation [Total 4 pts]

Evaluate the following OCaml expressions. It there is a compilation error, put ”ERROR”

let foo a = fun b -> map a (map b [1;2;3]) in

foo (fun x -> -x) (fun y -> y * 4)

let foo a b c -> if a (b c) then

c

else

c

in foo (fun a -> 0) (fun b -> b) true

5

Problem 6: Property Based Testing [Total 6 pts]

Consider an attempted (buggy!) implementation of thedouble up and dance function from project 6. double up and dance

should create a vector that contains duplicates of each item in the input slice, with the second item in the input slice added
to the fifth element of the created vector, if the created vector is longer than 4 elements. It then returns the created vector.
Examples:

double_up_and_dance(&[1, 2, 3]) // returns vec![1, 1, 2, 2, 5, 3]

double_up_and_dance(&[1, 2]) // returns vec![1, 1, 2, 2]

pub fn double_up_and_dance(slice: &[i32]) -> Vec<i32> {

let mut ret = Vec::with_capacity(slice.len() * 2);

for &elem in slice {

ret.push(elem);

ret.push(elem);

}

if let Some(val) = ret.get_mut(5) {

*val += slice[0];

}

ret

}

Consider the property p :
The 5th element of the double up and dance vector will be greater than the 2nd element of the input slice (if they exist).

Is p a valid property? Yes No

Suppose we wanted to write this test. We would encode the property as the following:

fn test_prop(v in prop::collection::vec(usize,1..10)){

//will generate random usize vectors of lengths 1 through 10

if v.len() < 3{

assert!(true)

}else{

assert!(double_up_and_dance(&v).get(5).unwrap() > v.get(2).unwrap())

}

}

Is test prop a correct encoding of the property p? Yes No

If we test this property on the provided implementation of double up and dance, will it ever assert false?

Y Yes

N No

6

Problem 7: Interpreters [Total 6 pts]

Given the following CFG, at what stage of language processing would each expression fail?
Mark ‘Valid’ if the expression would be accepted by the grammar and evaluate properly. Assume the only symbols allowed
are those found in the grammar. Choose only one choice for each expression.
Note: For expressions that result in an infinite loop, consider them to fail at the evaluator step.

E -> LX.E | E E | (E) | X

X -> c

For all c ∈ X , c is a lowercase English character

Lexer Parser Evaluator Valid
LZ.a L P E V

Lx.(Ly.x y) L P E V

x ((Ld.e y) e L P E V

(La.(Ly.(e e) Ly.(y y))) L P E V

(Lt.(Lx.(t y x)).z) L P E V

(Lx.x x) (Lx.x x) L P E V

7

Problem 8: Type Checking [Total 6 pts]

Consider the following Typing Rules for Ocaml:

G ⊢ true : bool G ⊢ false : bool G ⊢ n : int

G ⊢ x : G (x)
G ⊢ e1 : i nt G ⊢ e2 : i nt + = (i nt , i nt , i nt)

G ⊢ e1 + e2 : i nt

G ⊢ e1 : t1 G , x : t1 ⊢ e2 : t2
G ⊢ l et x = e1 in e2 : t2

G ⊢ e1 : bool G ⊢ e2 : t G ⊢ e3 : t
G ; i f e1 t hen e2 el se e3 : t

Write a type-checking proof for the expression

let x = true in if x then 4 else 5 + 7

8

Problem 9: Lambda Calculus [Total 10 pts]

(a) Reduce [6 pts]
Reduce the following lambda expression. Show every step. (If applicable, use Eager Evaluation).

(λc . c d (λa . a)) (λb . (λc . (λa . d b)))

(b) Free Variables:
[2 pts]

Circle the free variables in the expression below:

(λa .(λc .ab)) ((λb .(λa .b)) (aa (λa .c)))
(c) Alpha Equivalence: [2 pts]

Which of the following are alpha equivalent to the expression (λb .(λa .b) (ca)) ? Select all that apply.

A (λa .(λa .a) (ca))
B (λb .(λc .b) (ca))
C (λz .(λy .z) (x y))
D (λa .(λb .a) (ca))

9

Problem 10: Garbage Collection [Total 3 pts]

Suppose you have the following memory diagram. Select the correct representation of the stack and heap after the mark
and sweep garbage collection technique is run after popping v4 off the stack.

heap
Stack

V1

v2

v3
BA C

D

v4

E
F

A

heap
Stack

V1

v2

v3
BA C

D E
F

B

heap
Stack

V1

v2

v3
B C

D E
F

C

heap
Stack

V1

v2

v3
B C

D E

D

heap
Stack

V1

v2

v3
B C

D

E None of the above

10

Problem 11: Ownership and Lifetimes [Total 8 pts]

fn main(){

let mut x = 4;

let y = &mut x;

println!("{x},{y}");

}

Does the code compile? Y Yes N No

If no, explain why not in one sentence:

fn main(){

let x = String::from("bye");

let y = String::from("farewell");

let mut z = &x;

z = &y;

println!("{x},{z}")

}

Does the code compile? Y Yes N No

If no, explain why not in one sentence:

fn main(){

let x = String::from("hello");

let mut y = x;

y.push_str(" world!");

println!("{y}");

}

Does the code compile? Y Yes N No

If no, explain why not in one sentence:

struct Thing{

v1:usize,

v2:String

}

fn main(){

let mut x = Thing{v1:4,v2:String::from("hi")};

let y = &mut x;

y.v2.push_str(" bye");

let z = y.v2;

println!("{},{z}",x.v1)

}

Does the code compile? Y Yes N No

If no, explain why not in one sentence:

11

Problem 12: Coding [Total 16 pts]

(a) OCaml [8 pts]
Given an int list list, return true if the first column (the first element in each list) is in descending order, and false
otherwise. Assume the matrix is guaranteed to have equal height and width (m x m matrix) and non-empty (m > 0). If items
are equal, that is not descending (i.e. a column of [1;1;0] is not descending).
Making this function recursive is optional. If you are not using recursion, you can ignore the r ec keyword. You can use
standard library functions if you wish.

ex. ex

[[1;2;3;]; [[7;8;9];

[4;5;6]; => false [4;5;6]; => true

[7;8;9]] [1;6;3]]

let rec descending mtx =

(b) Rust [8 pts]
Given an Vec<Vec<u32>>, return true if the first column (the first element in each list) is in descending order, and false
otherwise. Assume the matrix is guaranteed to have equal height and width (m x m matrix) and non-empty (m > 0). If items
are equal, that is not descending (i.e. a column of [1;1;0] is not descending).

ex. ex

vec![vec![1,2,3], vec![vec![7,8,9],

vec![4,5,6], => false vec![4,5,6], => true

vec![7,8,9]] vec![1,6,3]]

fn descending(v:Vec<Vec<u32>>)->bool{

12

Cheat Sheet
OCaml
(* Map and Fold *)
(* (’ a −> ’ b) −> ’ a l i s t −> ’ b l i s t *)
l e t rec map f l = match l with

[] −> []
| x : : xs −> (f x) : : (map f xs)

(* (’ a −> ’ b −> ’ a) −> ’ a −> ’ b l i s t −> ’ a *)
l e t rec f o l d l e f t f a l = match l with

[] −> a
| x : : xs −> f o l d l e f t f (f a x) xs

(* (’ a −> ’ b −> ’ b) −> ’ a l i s t −> ’ b −> ’ b *)
l e t rec f o l d r i g h t f l a = match l with

[] −> a
| x : : xs −> f x (f o l d r i g h t f xs a)

(* Regex in OCaml *)
Re . Posix . re : s t r i n g −> regex
Re . compile : regex −> compiled regex

Re . exec : compiled regex −> s t r i n g −> group
Re . execp : compiled regex −> s t r i n g −> bool
Re . exec opt : compiled regex −> s t r i n g −> group option

Re . matches : compiled regex −> s t r i n g −> s t r i n g l i s t

Re . Group . get : group −> i n t −> s t r i n g
Re . Group . get opt : group −> i n t −> s t r i n g option

(* OCaml Function Types *)
: : − : ’ a −> ’ a l i s t −> ’ a l i s t

@ − : ’ a l i s t −> ’ a l i s t −> ’ a l i s t

+ , − , * , / − : i n t −> i n t −> i n t
+ . , − . , * . , / . − : f l o a t −> f l o a t −> f l o a t

&&, | | − : bool −> bool −> bool
not − : bool −> bool

ˆ − : s t r i n g −> s t r i n g −> s t r i n g

=> ,> ,= ,< ,<= : − ’ a −> ’ a −> bool

Structure of Regex
R → ∅

| σ
| ϵ
| RR
| R |R
| R ∗

Regex
* zero or more repetitions of the preceding character or group
+ one or more repetitions of the preceding character or group
? zero or one repetitions of the preceding character or group
. any character
r1 |r2 r1 or r2 (eg. a|b means ’a’ or ’b’)
[abc] match any character in abc

[ˆr1] anything except r1 (eg. [ˆabc] is anything but an ’a’, ’b’, or ’c’)
[r1-r2] range specification (eg. [a-z] means any letter in the ASCII range of a-z)
{n} exactly n repetitions of the preceding character or group
{n,} at least n repetitions of the preceding character or group
{m,n} at least m and at most n repetitions of the preceding character or group
ˆ start of string
$ end of string
(r1) capture the pattern r1 and store it somewhere (match group in Python)
\d any digit, same as [0-9]
\s any space character like \n, \t, \r, \f, or space

13

NFA to DFA Algorithm (Subset Construction Algorithm)
NFA (input): (Σ,Q , q0, Fn , δ), DFA (output): (Σ, R , r0, Fd , δn)

R ← {}
r0 ← ϵ − closure(σ, q0)
while \ an unmarked state r ∈ R do

mark r
for all a ∈ Σ do

E ← move(σ, r , a)
e ← ϵ − closure(σ, E)
if e < R then

R ← R ∪ {e}
end if
σn ← σn ∪ {r , a, e}

end for
end while
Fd ← {r | \s ∈ r with s ∈ Fn }

Rust
// Vectors
l e t vec = Vec : : new () ; // makes a new vector
l e t vec1 = vec ! [1 , 2 , 3]

vec . push (ele) ; // Pushes the element ’ ele ’
// to end of the vector ’ vec ’

vec . get (x) ; // returns the xth index of the
// vec in an option , with Some(ele)
// Some(ele) i f i t e x i s t s
// and None i f i t doesn ’ t e x i s t

// S t r i n g s
l e t s t r i n g = S t r i n g : : from (” Hello ”) ;

s t r i n g . push str (& s t r) ; // appends the s t r
// to s t r i n g

vec . t o i t e r () ; // returns an i t e r a t o r for vec

s t r i n g . chars () // returns an i t e r a t o r of chars
// over the a s t r i n g

i t e r . rev () ; // reverses an i t e r a t o r s d i r e c t i o n

i t e r . next () ; // returns an Option of the next
// item in the i t e r a t o r .

s t r u c t Bui ld ing{ // example of s t r u c t
name : Str ing ,
f l o o r s : i32 ,
locat ionx : f32 ,
locat iony : f32 ,

}

enum Option<T>{ Some(T) ; None } //enum Option type
option . unwrap () ; // returns the item in an Option or

// panics i f None

i f l e t x = option { . . . } // assigns x to the element
// in the option i f i t i s Some

14

