
CMSC330 - Organization of Programming Languages
Fall 2024 - Exam 2

CMSC330 Course Staff
University of Maryland

Department of Computer Science

Name:

UID:

I pledge on my honor that I have not given or received any unauthorized assistance on this assignment/examination

Signature:

Ground Rules

• Please write legibly. If we cannot read your answer you will not receive credit.
• You may use anything on the accompanying reference sheet anywhere on this exam
• Please remove the reference sheet from the exam
• The back of the reference sheet has some scratch space on it. If you use it, you must turn in your scratch work
• You may not leave the room or hand in your exam within the last 10 minutes of the exam
• If anything is unclear, ask a proctor. If you are still confused, write down your assumptions in the margin

Question Points
P1. 10
P2. 6
P3 8
P4. 4
P5. 18
P6. 16
P7. 20
P8. 18

Total 100

1

Problem 1: Language Concepts [Total 10 pts]

True False
CFGs and regular expressions can be used interchangably. T F

An expression’s grammatical correctness is checked in both the parsing and evaluating phase. T F

A turing complete language can simulate any turing machine. T F

A language that uses dynamic typing will raise any type errors during compile time, not runtime T F

The type of a variable in a dynamically typed language is determined at run-time, when the variable is last assigned. T F

{a : {a : I nt , b : I nt }, b : I nt } is a subtype of {a : {a : I nt , b : I nt }} T F

Inference rules can be used to specify whether a program is well typed. T F

A lambda calculus term is in beta normal form if it cannot be reduced any further using beta reduction. T F

Lambda calculus is not Turing-complete. T F

A type-safe language is one in which for every program, well-defined → well-typed. T F

Problem 2: Context Free Grammars - Acceptance [Total 6 pts]

Which of the following strings can be derived
using CFG below? Select all that apply.

S → gr eat er ? M N | N ? M : M | M
M → add M M | sub M M | N
N → n | b | (S)

Note: n ∈ Ú, b ∈ {t r ue, f al se}

A (sub (greater? true 2) 3) B ()

C greater? 2 3 D (((add 6 7)))

E (add 1 2 ? (sub 3 4) : 8) F (true 2)

Problem 3: Context Free Grammars - Derivations [Total 8 pts]

S → gr eat er ? M N | N ? M : M | M
M → add M M | sub M M | N
N → n | b | (S)

Note: n ∈ Ú, b ∈ {t r ue, f al se}

Using only left-most derivation, and the above grammar, derive the string ”true ? 4 : (add 2 1)” (do not draw a tree).

2

Problem 4: Context Free Grammars - Creation [Total 4 pts]

Design a Context Free Grammar using the alphabet {x, y, z}.
• Accepted strings must be of length 0 or more
• Accepted strings must have an equal count of both ’x’s and ’z’s, with an even number of ’y’s allowed in between ’x’s and

’z’s.
• The above rule can also be represented as: x a y bz a where a is a whole number and b is an even whole number.
• Examples of accepted strings: ”xyyz”, ”xxzz”, ”yy”, ”xxxyyzzz”, ””
• Note: Whole numbers are all positive integers including 0.

A S → xxY zz | ϵ
Y → yY | ϵ

B S → xSz |Y | ϵ
Y → y | ϵ

C S → xSz |Y | ϵ
Y → y yY | ϵ

D S → xSz |Y
Y → yY | ϵ

Problem 5: Lexing, Parsing, and Evaluating [Total 18 pts]

Given the following CFG, and assuming the Ocaml type system and semantics, at what stage of language processing would
each expression fail? Mark ‘Valid’ if the expression would be accepted by the grammar and evaluate successfully. Assume
the only symbols allowed are those found in the grammar.

E → if notM then E el se E | M
M →N >M | N <M | N
N →1 | 2 | 3 | 4 | true | false | (E)

Lexer Parser Evaluator Valid
(true > (false) L P E V

if true then 4 else 1 L P E V

2 < 3 L P E V

if not 2 < 2 then true L P E V

(((2))) L P E V

(if not true < false then 2 < 3 else 2) L P E V

3

Problem 6: Coding and Debugging [Total 16 pts]

Recall the interpreter code done in discussion/project 4/lecture. Given the following operational semantics rules, write a
function that will return the the final value of the expression. Whenever there is an issue of incorrect typing, raise an ”Un-
expected Type” error by doing raise (UnexpectedType "unexpected type").

A; true → true A; false → f al se

A; n → n

A; e1 → v1 A; ⊢ e2 → v2 v3 i s v1 && not v2

A; e1 e2 op1 → v3

A; e1 → v1 A; e2 → v2 v3 i s v1 < v2

A; e1 < e2 → v3

A; e1 → v1 A; e2 → v2 v3 = v1 ∗ v2
A; e1 e2 op2 → v3

type ast = Op1 of ast * ast | Op2 of ast * ast

| LT of ast * ast | Int of int | Bool of bool

type expr = Int of int | Bool of bool

Examples:

evaluate (Op1(Bool true, LT(Int 5, Int 2))) = Bool true

evaluate (Op2(Int 2, Int 4)) = Int 8

evaluate (Int(2)) = Int 2

evaluate (Bool (false)) = Bool false

let rec evaluate (ast: ast) : expr =

4

Problem 7: Lambda Calculus [Total 20 pts]

(a) Reduce [10 pts]
Reduce the following lambda expression to beta normal form using eager evaluation. Show every step, including alpha
conversions, if you used any.

(λx . y (x λy . x) z) ((λz . z) a)

(b) Free Variables:
[6 pts]

Circle the free variables in the expression below:

(λa .(λy .a x) y y) a ((λz .x (λz .z)) z)
(c) Alpha Equivalence: [4 pts]

Which of the following are alpha equivalent to the expression above,(λa .(λy .a x) y y) a ((λz .x (λz .z)) z) ? Select all
that apply.

A (λb .(λd .b x) dd) a ((λz .x (λc .c)) z))
B (λa .(λy .a x) y y) a ((λb .x (λb .b)) b))
C (λc .(λb .c x) bb) c ((λz .x (λd .d)) z))
D (λb .(λy .b x) y y) a ((λz .x (λc .c)) z))

5

Problem 8: Operational Semantics [Total 18 pts]

Consider the following rules for 2 Languages. Take note of the order of e1 and e2 that is bolded in Language B.

Language 1 Language 2

true → true true → true

false → false false → false

A(x) = v

A; x ⇒ v

A(x) = v

A; x ⇒ v

A; e1 ⇒ v1 A; e2 ⇒ v2 v3 = if v1 then not v2 else v2

A; e1 e2 op1 ⇒ v3

A; e1 ⇒ v1 A; e2 ⇒ v2 v3 = if v1 then not v2 else v2

A; op2 e2 e1 ⇒ v3

A; e1 ⇒ v1 A, x : v1; e2 ⇒ v2

A; l et x = e1 in e2 ⇒ v2

A; e2 ⇒ v1 A, x : v1; e1 ⇒ v2

A; (f un x → e1) e2 ⇒ v2

(a) Convert the following Language 1 sentence to its language 2 counterpart [6 pts]

A; let x = false in (false x op1)

(b) Prove the given expression by writing an OpSem proof using language 1.
[12 pts]

1

3

6

4 5

2

A; let x = false in (false x op1)

Scratch space:
IMPORTANT: you must fill in the blanks in the next page to receive credit.

6

Blank 1:

Blank 2:

Blank 3:

Blank 4:

Blank 5:

Blank 6:

7

