
CMSC330 Fall 2023 Quiz 3

Proctoring TA: Name:

Section Number: UID:

Problem 1: Context Free Grammars [Total 8 pts]

Consider the following Grammar:

E -> aSSc
S -> aSb|bSc|T
T -> a|b|c

(a) Is this an ambiguous grammar? [2 pts]

A Yes B No

(b) If you believe it to be ambiguous, prove it, otherwise derive "aaabbc" [6 pts]

E -> aSSc -> aaSbSc -> aaTbSc -> aaabSc -> aaabTc -> aaabbc
E -> aSSc -> aTSc -> aaSc -> aaaSbc -> aaaTbc -> aaabbc

Problem 2: Lexing Parsing and evaluating [Total 6 pts]

Given the following CFG, and assuming strong,
static typing as is used in OCaml, at what stage
of language processing would the nearby expres-
sions fail? Mark ‘Valid’ if the expression would be
accepted by the grammar and type checker.

E →M andE |M orE |M
M →N +M |N −M |N
N →1 | 2 | 3 | 4 | true | false | (E)

Hint: Pay careful attention to the terminal sym-
bols allowed in the grammar.

Lexer Parser Evaluator Valid
1 + 2 - (true and false) L P E V

true + (3 - 2} L P E V

3 * 1 - 2 L P E V

2 - 1 + 4 L P E V

)(2 or + - L P E V

true L P E V

1

Problem 3: OCaml Higher Order Functions [Total 6 pts]

Complete the skeleton code below which
defines a simplified version of partition
which takes a single ”pivot value” and a list.
It returns a pair of lists, the first with el-
ements below the pivot value, the second
with elements equal to or above the pivot
value. The lists returned can have elements
from the original list in any order (forward,
reverse, other).

(* Definition for fold_left *)
let rec fold_left f a lst =

match lst with
[] -> a
|x::t -> fold_left f (f a x) t

EXAMPLES:

let partition pivot lst = ...;;
val partition : ’a -> ’a list -> ’a list * ’a list = <fun>

partition 5 [12; 2; 9; 7; 6; 5; 1; 4];;
- : int list * int list =
([4; 1; 2], [5; 6; 7; 9; 12])
(* below 5 ... equal/above 5 *)

partition "c" ["banana"; "grape"; "carrot"; "pear"; "apple"];;
- : string list * string list =
(["apple"; "banana"], ["pear"; "carrot"; "grape"])
(* below "c" ... equal/above "c" *)

(*’a -> ’a list -> (’a list * ’a list) *)
let partition pivot lst =

let helper acc x = match acc with (a,b) -> if x < pivot then (x::a, b) else (a, x::b)

in fold_left helper ([], []) lst

2

