CMSC330 Fall 2023 Quiz 3

Proctoring TA: Name:
Section Number: uID:
Problem 1: Context Free Grammars [Total 8 pts]

Consider the following Grammar:

E -> aSSc
S -> aSb|bScIT
T -> alblc

(a) Is this an ambiguous grammar? [2 pts]

@Yes e No

(b) If you believe it to be ambiguous, prove it, otherwise derive "aaabbc" [6 pts]
Problem 2: Lexing Parsing and evaluating [Total 6 pts]
Given the following CFG, and assuming strong, Lexer Parser Evaluator Valid
static typing as is used in OCaml, at what stage 1 + 2 - (true and false)

of language processing would the nearby expres-
sions fail? Mark ‘valid’ if the expression would be
accepted by the grammar and type checker.

true + (3 - 2}

3x1 -2
E ->Mand E|M or E|M
M SN +M|N = M|N 2-1+4
N —1|2|3|4|true|false|(E) (2 or + -

Hint: Pay careful attention to the terminal sym-
bols allowed in the grammar. true

GHGECEGHGNG
ONONONONONCO
ONONONONONG
CONCNONONCONC

Problem 3: OCaml Higher Order Functions [Total 6 pts]

Complete the skeleton code below which EXAMPLES:

defines a simplified version of partition

which takes a single "pivot value” and a list. # 1€t partition pivot lst = ...;;

It returns a pair of lists, the first with el- V&l partition : ’a -> ’a list -> ’a list * ’a list = <fun>
ements below the pivot value, the second
with elements equal to or above the pivot
value. The lists returned can have elements

partition 5 [12; 2; 9; 7; 6; 5; 1; 4]1;;
- : int list * int list =

from the original list in any order (forward, ~ ([%5 15 21, (55 6; 75 9; 121)
reverse, other) (* below 5 ... equal/above 5 *)
(* Definition for fold_left *) # partition "c" ["banana"; "grape"; "carrot"; "pear"; "apple"l;;
let rec fold_left f a lst = - ¢ string list * string list =
match 1lst with (["apple"; "banana"], [upearu; "C&I‘I‘Ot"; ngrapeu])
] -> a (* below "c" equal/above "c" *)

|x::t -> fold_left f (f a x) t

(x’a -> ’a list -> (Pa list * ’a list) *)
let partition pivot 1lst =
let helper acc x =

in fold_left helper 1st

