
CMSC330 Fall 2023 Quiz 1 Solutions

Proctoring TA: Name:

Section Number: UID:

Problem 1: Basics [Total 4 pts]

True False
Checking to see if an arbitrary string of size 5 contains balanced parentheses can be done via a regular expression T F
The set of strings of size 5 has a finite number of places parenthesis could be. This could be brute forced.
Checking to see if an arbitrary string contains balanced parenthesis can be done via a regular expression T F
For arbitrary string sizes, you would need to remember how many parentheses was previously seen to check balance.
Since Regex is memoryless so you cannot do this.
Languages that support higher order programming allow you to return functions from other functions T F
Higher order programmer refers to the language’s philosophy of treating functions as "first class" data types
(eg. functions are treated as data)
Python uses a Dynamic Type System T F

Python uses a Static Type System T F
Variables can change their type throughout a program in Python
If a language uses a static type system, it means it also uses an explicit type system T F

If a language uses a explicit type system, it means it also uses an static type system T F
Explicit and static typing are independent of each other

Problem 2: Python Higher Order Programming [Total 4 pts]

Python has a built in function called filter(). It takes in a list and a function and will return a list of all values that passed
the filter from the input list. Examples:

l i s t (f i l t e r (lambda x : x > 4 , [1 , 2 , 3 , 4 , 5 , 6])) == [5 , 6]
l i s t (f i l t e r (lambda x : (x + 1)%3 == 0 , [1 , 2 , 3 , 4 , 5 , 6])) == [2 , 5]

Write your own filter method using reduce. You may not use any looping structure. Hint: a nested function OR a lambda
might be the way to go.

lambda
def m y _ f i l t e r (f , l s t) :

return reduce (lambda x , y : x + [y] i f f (y) else x , l s t , [])

nested funct ions
def m y _ f i l t e r (f , l s t) :

def helper (x , y) :
i f f (y) :

x . append (y)
return x

return reduce (helper , l s t , [])

1

Problem 3: Regex in Python [Total 4 pts]

(a) Which of the following strings are an exact match of the following Regular Expression? Mark all that apply. [2 pts]

ˆ([A-Z][a-z])+[0-9]*([A-Za-z])?$

A AbCd123Ef B AbCd C AbCD D AbC E AbCd123E F ABC G None

(b) [2 pts]

Consider the following strings:

"Name: Cliff" "Name: Kauffman" "Major: PHIL" "Major: CS"

Which regex would accept all the above strings? It is okay if they accept other strings as well. Mark all that apply.

A ˆ[A-Z][a-z]+: [A-Za-z]+ B (Name|Major): (Cliff|Kauffman|PHIL|CS)

C [A-z]+:.([A-Z]+|[A-Z][a-z]*) D None

*Note: One version of the quiz had no colon on the last string example ("Major CS"), so the answer there would be None.

Problem 4: Putting it all together [Total 8 pts]

Using either map or reduce, and given a list of phone numbers, implement get_area and sum_area to return the sum
of the area codes. You may not use any looping structure (for, while, etc), nor can you use .split(). You write as many
regexes as you think you will need.
Valid Phone numbers consist of 10 (ten) digits and will take one of the following formats. If a phone number is incorrectly
formatted, ignore it.

Phone Formats: Helpful Regex Things:
XXXXXXXXXX matched = re.match(regex,string) returns a match object or None if not matched
(XXX)XXXXXXX matched.group(x) returns the substring captured by group x
(XXX)-XXX-XXXX Some shortcuts:

"+": one or more repetitions
"?": Zero or one repetitions
"[ˆx]": Anything but x

For example:

numbers = [" 1234567890 " , " (111) −222 −3333 " , " (000)2223333 " , " (i n v a l i d) "]
sum_area (numbers) = 234 # 123 + 1 1 1 + 000

def get_area (phone_number) :
return the area code of a phone number
m = re .match (" ([0 − 9] { 3 }) [0 − 9] { 7 } " , phone_number)
i f not m:

m = re .match (" \ (([0 −9] { 3 }) \) (− [0 −9] { 3 } − | [0 −9] { 3 }) [0 −9] { 4 } " , phone_number)
i f m:

return m. group (1)
return "0"

def sum_area (numbers) :
areas = map(get_area , numbers)
t o t a l = reduce (lambda x , y : x + i n t (y) , areas , 0) # f i l l in the blank
return t o t a l

2

