CMSC330 - Organization of Programming Languages
Fall 2023 - Final Solutions

CMSC330 Course Staff
University of Maryland
Department of Computer Science

Name:

UID:

I pledge on my honor that | have not given or received any unauthorized assistance on this assignment/examination

Signature:

Ground Rules
You may use anything on the accompanying reference sheet anywhere on this exam

Please write legibly. If we cannot read your answer you will not receive credit
You may not leave the room or hand in your exam within the last 10 minutes of the exam

If anything is unclear, ask a proctor. If you are still confused, write down your assumptions in the margin

Question | Points
P1 15
P2 5
P3 5
Pz 10
Ps 10
P6 10
P7 10
P8 10
P9 15

P10 10
EC 5
Total 100 +5

Problem 1: Language Concepts [Total 15 pts]

Indicate True or False for each of the below statements. 1 point per question.

-
=
S
o
&
[7]
]

(A) 0ocCaml and Rust’s static type system force each function or data structure to be created for only one specific
type of data making it hard to create generalized code in those languages.

(B) While Rust is a “memory-safe” language, OCaml and Python are not “memory-safe” and have features which
may lead to memory corruption.

(C) Any language described by a CFG can also be described by a regular expression.

(D) Lambda Calculus can mimic the behavior of a Finite State Machine.

(E) Python associates types with values, not variables.

(F) A Context Free Grammar is Ambiguous if there is a single left most and single right most derivation for all
strings of literals in the grammar.

(G) “Double Freeing” (repeatedly de-allocating the same memory) is prevented in Rust by its semantics and com-
piler.

(H) Operational Semantics specifies the meaning of language syntax such as whether a = 7 means “check for
equality” or “bind this value to this variable”.

(1) Wwhile Python and OCaml often share data between different parts of the program, Rust must copy data often
as sharing pointers to the same block of memory is not permitted for safety reasons.

ONCE BN BECOEN BN EECENCENC)
® 6 0 © € ©»®» @ @ O

(J) Due to its limited nature, the simply typed Lambda Calculus we studied is not powerful enough to represent
ALL types of data or programs available in “real” programming languages.

Indicate which of the following choices best answers the question given. 2 points per answer.

(K) Python programs with type problems such as dividing an integer by a string are usually detected... [1 pts]
@ The semantics the language prevent this kind of problem from happening

At Compile Time before a program is created
. At Run Time when code causing the problem executes
@ This type of error is not detected and can lead to memory corruption.
(L) oCaml programs with memory problems such a using memory after it has been de-allocated are detected... [2 pts]
. The semantics the language prevent this kind of problem from happening
At Compile Time before a program is created
@ At Run Time when code causing the problem executes
@ This type of error is not detected and can lead to memory corruption.
(M) Rust programs with memory problems such a using memory after it has been de-allocated are detected... [2 pts]
@ The semantics of the language prevent this kind of problem from happening
. At Compile Time before a program is created
@ At Run Time when code causing the problem executes

@ This type of error is not detected and can lead to memory corruption.

Problem 2: Regular Expressions [Total 5 pts]
(a) Which of the following strings are accepted by the regular expression below? [2 pts]

L*DS| [0B] {2}

Select NONE if none of the first five (5) options match.
@os (osos (opor (p)rsee @0 (F)NONE

(b) Write a Regular Expression Consider the OCaml variant: [3 pts]
type shape = Rect of int * int|Circ of float
Write a regular expression that would describe an OCaml expression which binds a shape to a variable.

EXAMPLES:

Valid Invalid

let x = Rect(10,2) | let x = Rect 10,2 (* need parens around constructor *)

let y = Circ(1.23) | let yz = Circ(1.2) (* variable name too long *)

let z = Rec(0,-10) | let a = Rect(10.2,5.6) (* Rect requires ints in its pair, not floats *)
let w = Circ(-1.2) | let B = Circ(-1.2) (* variable name uppercase *)

Constraints and limitations:
1. The variable name will be a single lowercase alphabetic character
2. One or more spaces can appear between the 1et keyword and the variable name
. Zero or more spaces can appear on either side of the equal sign = in the strings
. The constructor of the shape must use parenthesis.
. No spaces may appear within the parentheses () of the constructor
. Multi-digit numbers MAY have leading zeros (i.e. 0123 is accepted)

. Only unary negation of numbers is accepted, NOT unary plus.

L g O U &~ W

. Floating point values always have a decimal point with trailing digits.

let +[a-z] *= *(Rect\([-12\d+[-12\d+\) | Circ\([-12\d+\.\d+\)

Problem 3: Context Free Grammars [Total 5 pts]
Consider the following Grammar:

S -> S is S|U
U -> Not U|P
P -> That|It

Derive the string "That is Not It". Use a leftmost derivation and show all steps for full credit

S>SisS->UisS >PisS >ThatisS >Thatis U »That is Not U »That is Not P >That is Not It

Problem 4: Finite State Machines [Total 10 pts]

Using the Subset Construction algorithm, convert the following NFA to a DFA, and fill in the blanks appropriately matching the DFA
provided with the right nodes and transitions. Only answer in the blank boxes / multiple choice below will be graded.

NFA: Scratch Space (if needed)

R
Vo
®

*@R‘Q@

E1 E2

(a) Blanks [9 pts]
1 2,3,4 34,5 5

S1: S2: S3: Sy
a b o b

E1: E2: E3: E4:
C

E5:

(b) Final States [1 pts]

Problem 5: Language Analysis [Total 10 pts]
Consider the following two code fragments which attempt to compute similar results involving only integers or integer tuples.

Python 1 (% OCaml *)
def ratio(x,y,as_tup): 2 let ratio x y as_tup =
if as_tup: 3 if as_tup then
return (x,y,x//y) 4 (x,y,x/y)
else: 5 else
return x//y 6 x/y

(a) Python Correctness: What would the Python version do on an input like ratio(15,3,True) vs ratio(15,3,False) ? [3 pts]
Would it function correctly?

It would return a tuple of (15,3,5) for True and just 5 for False. It would function correctly in both cases.

(b) OCaml Correctness: The OCaml version will not compile. Why not? Describe the problems the compiler will identify in a few [2 pts]
sentences.

The true branch returns an int*int*int tuple while the false branch returns just an int. This will not type check so the compiler
rejects it.

(c) oCaml Equivalence: Describe how to get the same effect in the OCaml function as is present in the Python program so that [3 pts]
the same basic data can be returned in the OCaml version. Mention any relevant features of OCaml that would be useful here.

Establish a new Variant data type that can carry either an int*int*int or just an int, something like type ratio_t = Int of int — Tup of]
int*int*int;;
IThen modify the ratio function to use one or the other in the true/false branch that the return type is ratio_t.

(d) Rust Safety: Nearby is a partial Rust version of the ratio () function along with main () that calls it several times. Describe [2 pts]
whether the Rust compiler will compile this program and the results of running it.

1 // Rust

2 fn ratio(x: 132, y: i32) -> i32{
3 return x / y;

4 F

IThe code is syntactically correct and the compiler will produce|
@ runnable program. While running, a Panic / Error will occur|
due to division by zero stemming from the call at line 7 with 0
s a denominator.

5 fn main(){

6 println! ("ratio(15,3): {}",ratio(15,3));
7 println! ("ratio(15,0): {}",ratio(15,0));
8 println! ("ratio(15,3): {}",ratio(16,2));
o F

Problem 6: Operational Semantics [Total 10 pts]
Consider the following operational semantics for some list operations with OCaml as the metalanguage:

=1 [x] = x =]

[x,y] = x = [y] [x,y,z] = x|y, z]

v=>hut len(t)=1 n=[/+1
len([]) =0 len(v) =>n

len(v)=1 >0 v=>xuzxs len(v)y=1 [>x v=oynys z=x-1 ys.get(z)=n

v.get(0) = x v.get(x) =>n

len(v) =1 [<x

v.get(x) = None

Construct a proof that /en([1,2]) => 2. Use the space below and follow the structure of the tree provided. Letters indicate
blanks that must be filled in.

(D) [2]=>2::[] (E) len([1)=>0 (F) 1=0+1

(A) [1,2]=>1::[2] (B) len([2])=>1 (€©) 2=1+1

len([1,2])=>2

Problem 7: Rust Ownership
fn append_one(v: &mut Vec<&i32>){ Nearby is a short Rust snippet. When compiled it will give an error to

let n = 1;
v.push(&n) ;
}

fn main() {
let three = 3;
let two = 2;

let mut down =
append_one (&mut down) ;
println! ("{:7}",down);

}

vec! [&three,&two] ;

the effect that Line 3: borrowed value &n does not live long
enough. Explain in a two sentences why this error is occurring

After the function ends, the owner 'n’ goes out of scope. Thus, the reference
to 'n’ that is being returned is invalid.

Explain code changes that would fix the append_one () function and allow it to append 1 to vectors. Your changes may include
alterations to the function and main.

change parameter to Vec<i32 >, v.push(n), let mut down = vec![three, two]

Problem 8: Type Inference

Give the type inferred for the following OCaml expressions.

fun a b ¢ >

(x A %)

(List.map a ¢c) >b || ¢ > Db

(’a —» ’a) — ’a list — ’a list — bool

fun x y z >

(x B *)

let _ = List.fold_left x

in z

(0,0)
[true;false;y]

(int * int — bool — int * int) — bool — ’c — ’c

fun a bcd >

(x C *)

List.fold_left a b (map c d)

(’b—>’c—>’b) —> b —» (°’d—>’c) — ’d list — ’b

[Total 10 pts]

[Total 10 pts]

Problem 9: OCaml Coding [Total 15 pts]

Below are types and a description of the 1ess_traveled_by function. Analyze the examples provided and implement this
function in OCaml.

type path = (* Branching paths with travel counts along Roads *)
| Road of int*path (* count of travel along Road AND remaining path *)
| Diverge of path*path (* left path AND right path *)
| End;; (* end of the path *)
(* EXAMPLE 1 %) (* EXAMPLE 2 %)
let road_to_nowhere = End;; # let cormack_road =
less_traveled_by road_to_nowhere;; Road (1, Road(2, Road(5, Road(8, End))));;
string list * int = ([], 0) # less_traveled_by cormack_road;;

- : string list * int = ([1, 16)

(* EXAMPLE 3 *)
let branching = (* Left/right path and count for each *)
Diverge(Diverge(Diverge(Road(4,End), (* (["left","left","left"],4) *)
Road(2,End)), (* (["left","left","right"],2) <- LEAST TRAVELED *)

Road(3,End)), (x (["left","right"]1,3) *)
Diverge(Road(7,End), (* (["right","left"],7) *)
Road(6,End)));; (* (["right","right"],6) *)

less_traveled_by branching;;
- : string list * int = (["left"; "left"; "right"], 2)

(* EXAMPLE 4 *)
let yellow_wood =

Road(2, Diverge(Road(4, Road(1l, Diverge(Road(3, End), (x (["left";"left"], 10) *)
End))), (x (["left";"right"], 7) *)
Road (1, Diverge(Diverge(Road(5, End), (x (["right";"left";"left"], 8) *)
Road(2, End)), (* (["right";"left";"right"], 5) LEAST*)
Road (1, Road(4, End))))));; (* (["right";"right"],8) *)

less_traveled_by yellow_wood;;
- : string list * int = (["right"; "left";"right"], 5)

Write your implementation on the next page.

Write your implementation here.

(* Returns a pair of (string list * int); the list shows one sequence of left/right
choices through the path with smallest total count along roads in the path. *)
let rec less_traveled_by path =

SOLUTION:
let rec less_traveled_by path =
match path with
| End -> ([1,0)
| Road(count,rem) ->
let (path, total) = less_traveled_by(rem) in
(path, count+total)
| Diverge(left,right) ->
let (1lpath, ltotal) = less_traveled_by(left) in
let (rpath, rtotal) = less_traveled_by(right) in
if 1ltotal < rtotal then
("left"::1path, ltotal)
else
("right"::rpath, rtotal)

Problem 10: Lambda Calculus [Total 10 pts]

(a) Lazy Evaluation, Single Step Perform a single step of Beta Reduction using the Lazy / Call by Name Evaluation Strategy on the [3 pts]
given Lambda Calculus expression. If the expression cannot be reduced, select “Beta Normal Form”. The options offered may be
alpha equivalent to what you calculated.

Ax.xx)((Ay.yy)(Az.zz)) (Ax.(Ay.y z)a)
@ (Ax.xx)(Az.zz) @ (Ax.Aa.a z)
(Ax.xx)((Az.zz)(Az.zZz)) G z
@ (W .yy)Az.22)((Ay.yy)(Az.22)) @ (x.a2)
@ Beta Normal Form @ Beta Normal Form
@ None of the above @ None of the above

(b) Eager Evaluation, Single Step: As before, perform a single step of Beta Reduction but this time use the Eager / Call by Value [3 pts]
Evaluation Strategy.

Ax.xx)((Ay.yy)(Az.zz)) (Ax.(Ay.y z)a)
@ (Ax.xx)(Az.zz) @ (Ax.Aa.a z)
. (Ax.xx)((Az.zz)(Az.zZz)) e z
(O (Ay.yy)Az.22))((Ay.yy)(Az.z2)) @ xa2)
@ Beta Normal Form @ Beta Normal Form
@ None of the above @ None of the above
(c) Reduce to Normal Form: Convert the following to Beta Normal Form: (Ax.Ay.Az.x y z) ab(Ad.d c) e [2 pts]
@abec ab(/ld.dc) @ab @abecyz
@ Already in Beta Normal Form @ Diverges like infinite recursion .None
(d) Reduce to Normal Form: Convert the following to Beta Normal Form: (Ay.y y y)(Ay.y y ¥) [2 pts]
A Ay.yyy) ®)yyy ©y (D) Ay.y y) Ay.y y)Ay.y y y)
@ Already in Beta Normal Form . Diverges like infinite recursion @None

The blank area below may be used for calculations

Problem 11: Extra Credit [Total 5 pts]

(a) What is your TA’s name and what is your section id? [3 pts]
Look it up on the website!

(b) What is your favorite pun? [2 pts]

What did the duck say when the waiter gave him the check? "Put it on my bill.”

10

T PR TC4H54A%H KN A 1+Rc—1+—c—"1—
——F— R B S
K C Z D
T Y H L I X
G O Q S
X L AW
L
MN——%—F—* H B
A At A [K
0O A—t—MN—FA—TH—TF—+t F . R
K I H X H E) vV J A
L J] S S WU P Vv Q [K
M—A——— S [p X Q
B Z MY HR i[X F
N G S N A YV 7 G
+——4———5 D H
PMGEYD P I S L
H U 4+——FA— MoA I L L
W P &N—t—5+96 C R X R U
CGOoOoOH 1T I I £ N P i H CHD I G

1. zoya 11.tomas 21. margaret 31. ceren

2. vruti 12.danesh 22.vasu 32.dalton

3. sheldon 13.vanshika 23. ani 33. ohsung

4, adam 14. lily 24, jason 34, maria

5. olivia 15. annaika 25. mia 3b.amr

6. jared 16. annabel 26. lucinda 36. mollie

7. edwin 17. smit 27.anoushka 37.anders

8. joshua 18.teja 28.jana 38. juan

9. brian 19. arwen 29. rohan 39. roshni

10. abby 20.shawn 30.tim 40. victoria

1

