
CMSC330 - Organization of Programming Languages
Fall 2023 - Final

CMSC330 Course Staff
University of Maryland

Department of Computer Science

Name:

UID:

I pledge on my honor that I have not given or received any unauthorized assistance on this assignment/examination

Signature:

Ground Rules
• You may use anything on the accompanying reference sheet anywhere on this exam

• Please write legibly. If we cannot read your answer you will not receive credit

• You may not leave the room or hand in your exam within the last 10 minutes of the exam

• If anything is unclear, ask a proctor. If you are still confused, write down your assumptions in the margin
Question Points

P1 15
P2 5
P3 5
P4 10
P5 10
P6 10
P7 10
P8 10
P9 15
P10 10
EC 5

Total 100 + 5

1

Problem 1: Language Concepts [Total 15 pts]

Indicate True or False for each of the below statements. 1 point per question.
True False

(A) OCaml and Rust’s static type system force each function or data structure to be created for only one specific
type of data making it hard to create generalized code in those languages.

T F

(B) While Rust is a “memory-safe” language, OCaml and Python are not “memory-safe” and have features which
may lead to memory corruption.

T F

(C) Any language described by a CFG can also be described by a regular expression. T F

(D) Lambda Calculus can mimic the behavior of a Finite State Machine. T F

(E) Python associates types with values, not variables. T F

(F) A Context Free Grammar is Ambiguous if there is a single left most and single right most derivation for all
strings of literals in the grammar.

T F

(G) “Double Freeing” (repeatedly de-allocating the same memory) is prevented in Rust by its semantics and com-
piler.

T F

(H) Operational Semantics specifies the meaning of language syntax such as whether a = 7 means “check for
equality” or “bind this value to this variable”.

T F

(I) While Python and OCaml often share data between different parts of the program, Rust must copy data often
as sharing pointers to the same block of memory is not permitted for safety reasons.

T F

(J) Due to its limited nature, the simply typed Lambda Calculus we studied is not powerful enough to represent
ALL types of data or programs available in “real” programming languages.

T F

Indicate which of the following choices best answers the question given. 2 points per answer.

(K) Python programs with type problems such as dividing an integer by a string are usually detected... [1 pts]
A The semantics the language prevent this kind of problem from happening

B At Compile Time before a program is created

C At Run Time when code causing the problem executes

D This type of error is not detected and can lead to memory corruption.

(L) OCaml programs with memory problems such a using memory after it has been de-allocated are detected... [2 pts]
A The semantics the language prevent this kind of problem from happening

B At Compile Time before a program is created

C At Run Time when code causing the problem executes

D This type of error is not detected and can lead to memory corruption.

(M) Rust programs with memory problems such a using memory after it has been de-allocated are detected... [2 pts]
A The semantics of the language prevent this kind of problem from happening

B At Compile Time before a program is created

C At Run Time when code causing the problem executes

D This type of error is not detected and can lead to memory corruption.

2

Problem 2: Regular Expressions [Total 5 pts]
(a) Which of the following strings are accepted by the regular expression below? [2 pts]

L*DS|[OB]{2}

Select NONE if none of the first five (5) options match.

A DS B OBOB C DOL D LSBB E OB F NONE

(b) Write a Regular Expression Consider the OCaml variant: [3 pts]
type shape = Rect of int * int|Circ of float

Write a regular expression that would describe an OCaml expression which binds a shape to a variable.
EXAMPLES:

Valid Invalid
let x = Rect(10,2) let x = Rect 10,2 (* need parens around constructor *)

let y = Circ(1.23) let yz = Circ(1.2) (* variable name too long *)

let z = Rec(0,-10) let a = Rect(10.2,5.6) (* Rect requires ints in its pair, not floats *)

let w = Circ(-1.2) let B = Circ(-1.2) (* variable name uppercase *)

Constraints and limitations:
1. The variable name will be a single lowercase alphabetic character

2. One or more spaces can appear between the let keyword and the variable name

3. Zero or more spaces can appear on either side of the equal sign = in the strings

4. The constructor of the shape must use parenthesis.

5. No spaces may appear within the parentheses () of the constructor

6. Multi-digit numbers MAY have leading zeros (i.e. 0123 is accepted)

7. Only unary negation of numbers is accepted, NOT unary plus.

8. Floating point values always have a decimal point with trailing digits.

Problem 3: Context Free Grammars [Total 5 pts]
Consider the following Grammar:

S -> S is S|U

U -> Not U|P

P -> That|It

Derive the string "That is Not It". Use a leftmost derivation and show all steps for full credit

3

Problem 4: Finite State Machines [Total 10 pts]

Using the Subset Construction algorithm, convert the following NFA to a DFA, and fill in the blanks appropriately matching the DFA
provided with the right nodes and transitions. Only answer in the blank boxes / multiple choice below will be graded.

NFA: Scratch Space (if needed)

31

2 4

5

a

a c ϵ

b

c

DFA:

S3S1

S2 S4

E1 E2 E3

E4

E5

(a) Blanks [9 pts]

S1: S2: S3: S4:

E1: E2: E3: E4:

E5:

(b) Final States [1 pts]

S1 S2 S3 S4

4

Problem 5: Language Analysis [Total 10 pts]
Consider the following two code fragments which attempt to compute similar results involving only integers or integer tuples.

1 # Python

2 def ratio(x,y,as_tup):

3 if as_tup:

4 return (x,y,x//y)

5 else:

6 return x//y

1 (* OCaml *)

2 let ratio x y as_tup =

3 if as_tup then

4 (x,y,x/y)

5 else

6 x/y

(a) Python Correctness: What would the Python version do on an input like ratio(15,3,True) vs ratio(15,3,False) ? [3 pts]
Would it function correctly?

(b) OCaml Correctness: The OCaml version will not compile. Why not? Describe the problems the compiler will identify in a few [2 pts]
sentences.

(c) OCaml Equivalence: Describe how to get the same effect in the OCaml function as is present in the Python program so that [3 pts]
the same basic data can be returned in the OCaml version. Mention any relevant features of OCaml that would be useful here.

(d) Rust Safety: Nearby is a partial Rust version of the ratio() function along with main() that calls it several times. Describe [2 pts]
whether the Rust compiler will compile this program and the results of running it.

1 // Rust

2 fn ratio(x: i32, y: i32) -> i32{

3 return x / y;

4 }

5 fn main(){

6 println!("ratio(15,3): {}",ratio(15,3));

7 println!("ratio(15,0): {}",ratio(15,0));

8 println!("ratio(15,3): {}",ratio(16,2));

9 }

5

Problem 6: Operational Semantics [Total 10 pts]

Consider the following operational semantics for some list operations with OCaml as the metalanguage:

[] ⇒ [] [x] ⇒ x :: []

[x , y] ⇒ x :: [y] [x , y , z] ⇒ x :: [y , z]

l en ([]) ⇒ 0

v ⇒ h :: t l en (t) ⇒ l n = l + 1
l en (v) => n

l en (v) ⇒ l l > 0 v => x :: xs
v .get (0) ⇒ x

l en (v) ⇒ l l > x v ⇒ y :: y s z = x − 1 y s .get (z) ⇒ n

v .get (x) => n

l en (v) ⇒ l l < x

v .get (x) ⇒ None

Construct a proof that l en ([1, 2]) => 2. Use the space below and follow the structure of the tree provided. Letters indicate
blanks that must be filled in.

========================= ==========================

(D) (E) (F)

=============== ===

(A) (B) (C)

==

len([1,2])=>2

6

Problem 7: Rust Ownership [Total 10 pts]
1 fn append_one(v: &mut Vec<&i32>){

2 let n = 1;

3 v.push(&n);

4 }

5

6 fn main() {

7 let three = 3;

8 let two = 2;

9 let mut down = vec![&three,&two];

10 append_one(&mut down);

11 println!("{:?}",down);

12 }

Nearby is a short Rust snippet. When compiled it will give an error to
the effect that Line 3: borrowed value &n does not live long

enough. Explain in a two sentences why this error is occurring

Explain code changes that would fix the append_one() function and allow it to append 1 to vectors. Your changes may include
alterations to the function and main.

Problem 8: Type Inference [Total 10 pts]
Give the type inferred for the following OCaml expressions.

fun a b c -> (* A *)

(List.map a c) > b || c > b

fun x y z -> (* B *)

let _ = List.fold_left x

(0,0)

[true;false;y]

in z

fun a b c d -> (* C *)

List.fold_left a b (map c d)

7

Problem 9: OCaml Coding [Total 15 pts]
Below are types and a description of the less_traveled_by function. Analyze the examples provided and implement this
function in OCaml.

type path = (* Branching paths with travel counts along Roads *)

| Road of int*path (* count of travel along Road AND remaining path *)

| Diverge of path*path (* left path AND right path *)

| End;; (* end of the path *)

(* EXAMPLE 1 *) (* EXAMPLE 2 *)

let road_to_nowhere = End;; # let cormack_road =

less_traveled_by road_to_nowhere;; Road(1, Road(2, Road(5, Road(8, End))));;

string list * int = ([], 0) # less_traveled_by cormack_road;;

- : string list * int = ([], 16)

(* EXAMPLE 3 *)

let branching = (* Left/right path and count for each *)

Diverge(Diverge(Diverge(Road(4,End), (* (["left","left","left"],4) *)

Road(2,End)), (* (["left","left","right"],2) <- LEAST TRAVELED *)

Road(3,End)), (* (["left","right"],3) *)

Diverge(Road(7,End), (* (["right","left"],7) *)

Road(6,End)));; (* (["right","right"],6) *)

less_traveled_by branching;;

- : string list * int = (["left"; "left"; "right"], 2)

(* EXAMPLE 4 *)

let yellow_wood =

Road(2, Diverge(Road(4, Road(1, Diverge(Road(3, End), (* (["left";"left"], 10) *)

End))), (* (["left";"right"], 7) *)

Road(1, Diverge(Diverge(Road(5, End), (* (["right";"left";"left"], 8) *)

Road(2, End)), (* (["right";"left";"right"], 5) LEAST*)

Road(1, Road(4, End))))));; (* (["right";"right"],8) *)

less_traveled_by yellow_wood;;

- : string list * int = (["right"; "left";"right"], 5)

Write your implementation on the next page.

8

Write your implementation here.

(* Returns a pair of (string list * int); the list shows one sequence of left/right

choices through the path with smallest total count along roads in the path. *)

let rec less_traveled_by path =

9

Problem 10: Lambda Calculus [Total 10 pts]
(a) Lazy Evaluation, Single Step Perform a single step of Beta Reduction using the Lazy / Call by Name Evaluation Strategy on the [3 pts]
given Lambda Calculus expression. If the expression cannot be reduced, select “Beta Normal Form”. The options offered may be
alpha equivalent to what you calculated.

(λx .xx) ((λy .y y) (λz .zz))

A (λx .xx) (λz .zz)
B (λx .xx) ((λz .zz) (λz .zz))
C ((λy .y y) (λz .zz)) ((λy .y y) (λz .zz))
D Beta Normal Form
E None of the above

(λx .(λy .y z)a)

A (λx .λa .a z)
B z

C (λx .a z)
D Beta Normal Form
E None of the above

(b) Eager Evaluation, Single Step: As before, perform a single step of Beta Reduction but this time use the Eager / Call by Value [3 pts]
Evaluation Strategy.

(λx .xx) ((λy .y y) (λz .zz))

A (λx .xx) (λz .zz)
B (λx .xx) ((λz .zz) (λz .zz))
C ((λy .y y) (λz .zz)) ((λy .y y) (λz .zz))
D Beta Normal Form
E None of the above

(λx .(λy .y z)a)

A (λx .λa .a z)
B z

C (λx .a z)
D Beta Normal Form
E None of the above

(c) Reduce to Normal Form: Convert the following to Beta Normal Form: (λx .λy .λz .x y z) a b (λd .d c) e [2 pts]

A a b e c B a b (λd .d c) C a b D a b e c y z

E Already in Beta Normal Form F Diverges like infinite recursion G None

(d) Reduce to Normal Form: Convert the following to Beta Normal Form: (λy .y y y) (λy .y y y) [2 pts]

A (λy .y y y) B y y y C y D (λy .y y y) (λy .y y y) (λy .y y y)
E Already in Beta Normal Form F Diverges like infinite recursion G None

The blank area below may be used for calculations

Problem 11: Extra Credit [Total 5 pts]
(a) What is your TA’s name and what is your section id? [3 pts]

(b) What is your favorite pun? [2 pts]

Raising a family is hard. Especially if you’re not a necromancer

10

Cheat Sheet
Python

L i s t s
l s t = []
l s t = [1 , 2 , 3 , 4]
l s t [2] # returns 3
l s t [− 1] # returns 4
l s t [0] = 4 # l i s t becomes [4 , 2 , 3 , 4]
l s t [1 : 3] # returns [2 , 3]

L i s t funct ions
l s t = [1 , 2 , 3 , 4 , 5]
len (l s t) # returns 5
sum(l s t) # returns 15
l s t . append (6) # returns None . l s t now [1 , 2 , 3 , 4 , 5 , 6]
l s t . pop () # returns 6 . l s t i s now [1 , 2 , 3 , 4 , 5]
[1 , 2 , 3] + [4 , 5 , 6] # returns [1 , 2 , 3 , 4 , 5 , 6]

S t r i n g s
s t r i n g = ” hel lo ”
len (s t r i n g) # returns 5
s t r i n g [0] # returns h
s t r i n g [2 : 4] # returns l l
s t r i n g = ” t h i s i s a sentence ”
s t r i n g . s p l i t (” ”)
returns [” t h i s ” , ” i s ” , ”a ” , ” sentence ”]

D ic t ionary
{ ’ a ’ : 0 , ’ b ’ : 1 } . keys () # returns [’ a ’ , ’ b ’]
{ ’ a ’ : 0 , ’ b ’ : 1 } . values () # returns [0 , 1]
’ a ’ in { ’ a ’ : 0 , ’ b ’ : 1 } # returns True

Map and Reduce

map(function , l s t)
returns a map object corresponding to the
r e s u l t of c a l l i n g funct ion to each item in l s t
t y p i c a l l y needs to be cast as a l i s t

reduce (function , l s t , s t a r t)
returns a value that i s the combination of a l l
items in l s t . funct ion (accum , cur) w i l l be used to
combine the items together , s t a r t i n g with s tar t ,
and then going through each item in the l i s t .

reduce (function , l s t)
omitt ing s t a r t uses the f i r s t element being
reduced as ’ accum ’ in the above version

regex in python
re . ful lmatch (pattern , s t r i n g)
returns a match object i f s t r i n g i s a
f u l l / exact match to s t r i n g .
returns None otherwise

re . search (pattern , s t r i n g)
returns a match object corresponding to
the f i r s t instance of pattern in s t r i n g .
returns None otherwise

re . f i n d a l l (pattern , s t r i n g)
returns a l l non−overlapping matches
of pattern in s t r i n g as a l i s t

re . f i n d i t e r (pattern , s t r i n g)
returns an i t e r a t o r over the s t r i n g
each i t e r a t i o n gives a match object

match objects
m = re . search (” ([0 − 9] +) ([0 −9] +) ” , ” 12 3 4 ”)
m. groups () # returns (” 1 2 ” , ” 3 4 ”)
returns a tuple of a l l th ings that were
captured with parentheses

m. group (n) # m. group (1) = ” 1 2 ” , m. group (2) = ”34”
returns the s t r i n g captured by the nth
set of parentheses

11

OCaml
(* L i s t s *)
l e t l s t = []
l e t l s t = [1 ; 2 ; 3 ; 4]

(* : : (cons) has type ’ a−> ’a l i s t −> ’ a l i s t *)
1 : : 2 : : 3 : : [] = [1 ; 2 ; 3]

(* @ (append) has type ’ a l i s t −> ’ a l i s t −> ’ a l i s t *)
[1 ; 2 ; 3] @ [4 ; 5 ; 6] = [1 ; 2 ; 3 ; 4 ; 5 ; 6]

(* var iants *)
type l i n k e d l i s t = Cons of i n t * l i n k e d l i s t | N i l
Cons (1 , Cons (2 , Cons (3 , N i l)))

(* pattern matching *)
match l i n k e d l i s t with

Cons (x , y) −> ” L i s t ”
| N i l −> ” N i l ”

(* Anonymous Functions *)
(fun a b c −> a + b + c *)

(* Map and Fold *)
l e t rec map f l = match l with

[] −> []
| x : : xs −> (f x) : : (map f t)

l e t rec f o l d l e f t f a l = match l with
[] −> a

| x : : xs −> f o l d l e f t f (f a x) xs

l e t rec f o l d r i g h t f l a = match l with
| [] −> a
| x : : xs −> f x (f o l d r i g h t f xs a)

Rust
// Vectors
l e t vec = Vec : : new () ; // makes a new vector
l e t vec1 = vec ! [1 , 2 , 3]

vec . push (ele) ; // Pushes the element ’ ele ’
// to end of the vector ’ vec ’

// S t r i n g s
l e t s t r i n g = S t r i n g : : from (” Hello ”) ;

s t r i n g . push str (& s t r) ; // appends the s t r
// to s t r i n g

vec . t o i t e r () ; // returns an i t e r a t o r for vec

s t r i n g . chars () // returns an i t e r a t o r of chars
// over the a s t r i n g

i t e r . rev () ; // reverses an i t e r a t o r s d i r e c t i o n

i t e r . next () ; // returns an Option of the next
// item in the i t e r a t o r .

s t r u c t Bui ld ing{ // example of s t r u c t
name : Str ing ,
f l o o r s : i32 ,
locat ionx : f32 ,
locat iony : f32 ,

}

enum Option<T>{ Some(T) ; None } //enum Option type
option . unwrap () ; // returns the item in an Option or

// panics i f None

12

Regex
* zero or more repetitions of the preceding character or group
+ one or more repetitions of the preceding character or group
? zero or one repetitions of the preceding character or group
. any character
r1 |r2 r1 or r2 (eg. a—b means ’a’ or ’b’)
[abc] match any character in abc

[ˆr1] anything except r1 (eg. [ˆabc] is anything but an ’a’, ’b’, or ’c’)
[r1-r2] range specification (eg. [a-z] means any letter in the ASCII range of a-z)
{n} exactly n repetitions of the preceding character or group
{n,} at least n repetitions of the preceding character or group
{m,n} at least m and at most n repetitions of the preceding character or group
ˆ start of string
$ end of string
(r1) capture the pattern r1 and store it somewhere (match group in Python)
\d any digit, same as [0-9]
\s any space character like \n, \t, \r, \f, or space

NFA to DFA Algorithm (Subset Construction Algorithm)
NFA (input): (Σ,Q , q0, Fn ,σ), DFA (output): (Σ, R , r0, Fd ,σn)

R ← {}
r0 ← ϵ − closure(σ, q0)
while \ an unmarked state r ∈ R do

mark r
for all a ∈ Σ do

E ← move(σ, r , a)
e ← ϵ − closure(σ, E)
if e < R then

R ← R ∪ {e}
end if
σn ← σn ∪ {r , a, e}

end for
end while
Fd ← {r | \s ∈ r with s ∈ Fn }
Structure of Regex

Regex
R → ∅

— σ
— ϵ
— RR
— R |R
— R ∗

13

14

