
CMSC330 - Organization of Programming Languages
Fall 2023 - Exam 1

CMSC330 Course Staff
University of Maryland

Department of Computer Science

Name:

UID:

I pledge on my honor that I have not given or received any unauthorized assistance on this assignment/examination

Signature:

Ground Rules
• You may use anything on the accompanying reference sheet anywhere on this exam
• Please write legibly. If we cannot read your answer you will not receive credit
• You may not leave the room or hand in your exam within the last 10 minutes of the exam
• If anything is unclear, ask a proctor. If you are still confused, write down your assumptions in the margin

Question Points
P1 10
P2 15
P3 15
P4 15
P5 15
P6 15
P7 15

Total 100

1

Problem 1: Language Concepts [Total 10 pts]

(a) True/False
[8 pts]

True False
OCaml is statically and latently (implicitly) typed T F

if f is a function passed into map, f can also be passed into reduce T F

x = x + 1 and x += 1 are semantically the same T F

lambda x:x(3) is an example of a higher order function in Python T F

Python does not track the types associated with variables so it will never generate an error T F
for type mismatches like 3+"hi"

Examining a Python expression like x+y, one can determine that it will never generate a runtime type error. T F

Examining an OCaml expression like x+y, one can determine that it will never generate a runtime type error. T F

Extended Regex syntax such as + ? . [a-z] that are often supported by Regular Expression T F
engines CANNOT be translated to the fundamental Regex building primitives of concatenation,
union, and Kleene closure.

(b) Unlike Python, OCaml requires special syntax to allow ”side effects” and ”mutation” to occur. Describe in 2 sentences an
advantage this confers to OCaml programs. [2 pts]

Problem 2: Regular Expressions [Total 15 pts]

(a) Which of the following strings are an exact match of the following Regular Expression? Mark all that apply. [5 pts]

^[A-Z]+.3|(a|A)*[a-z][0-9]3$

A ABC123 B abc123 C Ab12 D ABCa134 E None

(b) Write a regular expression that recognizes Engineering / Exponential numbers. Examples of these are shown below. In
this format, numbers may start with an optional -/+, followed by exactly 1 non-zero digit, followed by a decimal point. After
the decimal, there is a upper/lower case E, followed by an optional +/-, and ending with one or more digits. [5 pts]

Examples: 1.2345e20 -3.14159E+00 +5.67e-1 -2.0e+123

(c) Write a regular expression that accepts mathematical expressions that could be put into a 4-function integer calculator. [5 pts]

Examples: 1+2, 2-3, -5*6, 12/3/2, 1+3-5, 36*122+5/6

2

Problem 3: Finite State Machines [Total 15 pts]

(a) Using the subset algorithm, convert the following NFA to a DFA, and fill in the blanks appropriately matching the DFA
provided with the right nodes and transitions. [12 pts]

NFA: Scratch Space (if needed)

0 1

2 3

b
ϵ

a aϵ

b

ϵ

a

DFA:

S1 S2

S3 S4

E1

E2 E3 E4

E5

E6

S1: S2: S3: S4:

E1: E2: E3:

E4: E5: E6:

(b) Which of the following are the final states? Select all that apply [3 pts]

1 S1 2 S2 3 S3 4 S4 N None

Problem 4: Higher Order Programming [Total 15 pts]

(a) What’s the return value? If the code throws an error put ”ERROR”. [3 pts]

return map(lambda x: len(x[0]), [["hello"],[[1,2],3]], [])

3

(b) What segment(s) of code would add up the values in lst after cubing each value? Mark all that apply [4 pts]

A reduce(lambda x,y: x + y, map(lambda x: x * x * x,lst),0)

B reduce(lambda x,y: x * x * x + y, lst, 0)

C reduce(lambda x,y: x + y, reduce(lambda x,y: x * x * x,lst,0),0)

D None

(c) Convert the following function to a shorter version that uses a one or more appropriate higher-order functions. Missing
opportunities to utilize higher-order functions will result in a loss of credit. You may use Lambda expressions or helper
functions. [8 pts]

OLD VERSION

def only_odd_update(lst): # EXAMPLES

newlst = [] # >>> only_odd_update([7, 2, 4, 9, 11])

for x in lst: # [22, 28, 34]

if x % 2 == 1: # >>> only_odd_update([6])

new = x*3 + 1 # []

newlst.append(new) # >>> only_odd_update([12,14,33])

return newlst # [100]

from functools import * # all higher-order functions available

NEW VERSION

def only_odd_update(lst):

YOUR CODE BELOW

Problem 5: Regex / FSM Relations [Total 15 pts]

(a) Con V. Eertit claims to have found a regular expression R that has no equivalent Finite State Machine to match it. Con
believes this will earn him great acclaim while the claim seems dubious to you. If Con showed you the regex R, how would
you use it to disprove his claim? Answer in 2-3 sentences. [8 pts]

4

(b) Equi Valent has spent a considerable amount of time writing a slick NFA matching routine. It takes an NFA and a string
and produces a true or false based on whether the string would be accepted by the NFA. Her supervisor, Didno Take (330th
in his line) insists that Equi must now also create a DFA matching algorithm for the company. Should Equi be worried about
staying late at work to create the DFA matching routine? Explain your reasoning based on the relationship between NFAs
and DFAs. Answer in 2-3 sentences. [7 pts]

Problem 6: Type Inference and Static Typing in OCaml [Total 15 pts]

Consider the following OCaml function which is being defined in an interactive loop.
let trip_max a b =

if a > b then

3*a

else

3*b;;

(a) What is the type inferred for trip max? [3 pts]

Tup Le’Type is coming from Python and learning OCaml. He tries to invoke the above function and gets an error.

trip_max(1,2);;

Line 1, characters 8-13:

1 | trip_max(1,2);;

^^^^^

Error: This expression has type ’a * ’b but an expression was expected of type int

(b) Explain why this error is occurring and instruct Tup on how to correctly invoke the function; use 1-2 sentences. [3 pts]

Write down the types inferred for the following OCaml expressions. If there is a type error: write ”type error”.

(c) [3pts]

if true || false then

if false then

3 > 4

else

false

else

1 = 9

(d) [3pts]

let f a b c =

if b > c then

a

else

c + 1

in f

(e) [3pts]

let f =

fun a b ->

if a then b

else b

5

Problem 7: Python Programming [Total 15 pts]

An email address is divided into 3 parts. With user@terpmail.umd.edu as an example these three parts are
• user: The ‘local’ id which appears before the @ sign and must be at least 3 characters long
• terpmail: Subdomains which appear immediately after the @ sign and may contain several ‘dotted’ portions.
• umd.edu: The Root Domain which is the last dotted part of the email

Assume only upper/lowercase letters, numbers, periods (.), and exactly one @ sign may be appear in email addresses, but
no other characters.
Write a Python function popular_email_counts that takes in a list of email addresses as strings and counts the number
of occurrences of each of the following root domains:

(1) gmail.com (2) yahoo.com (3) umd.edu

The counts are returned as a dictionary with the root domains as keys and the counts as values. If an allowed Root Domain
occurs 0 times, it may be included in the dictionary with 0 count or excluded from it.
Email addresses that do not follow specifications or are not in one of the allowed Root Domains above are ignored and do
not contribute to any count.

EXAMPLE:

Valid Emails Invalid Emails
abc@umd.edu no-dashes@umd.edu
def@umd.edu notValidDomain@yandex.edu
abc@sub.gmail.com ab@umd.edu
ABC@gmail.com caseMattersForDomain@GMAIL.com
123@terpmail.umd.edu no@allowed@gmail.com
allowed@gmail.com
DEF@sub.dom.gmail.com

The results of processing the adjacent email ad-
dresses as a list is one of:

{’umd.edu’:3, ’gmail.com’:4}

OR

{’umd.edu’:3, ’yahoo.com’:0, ’gmail.com’:4}

CONSTRAINT: You may NOT use Python’s split() method. Instead, use other Regular Expression-based processing func-
tions to check for email matches and dissect their parts.

import re
from functools import reduce

def popular email counts (emails) :
YOUR CODE BELOW

6

Cheat Sheet
Python
L i s t s
l s t = []
l s t = [1 , 2 , 3 , 4]
l s t [2] # returns 3
l s t [− 1] # returns 4
l s t [0] = 4 # l i s t becomes [4 , 2 , 3 , 4]
l s t [1 : 3] # returns [2 , 3]

L i s t funct ions
l s t = [1 , 2 , 3 , 4 , 5]
len (l s t) # returns 5
sum(l s t) # returns 15
l s t . append (6) # returns None . l s t now [1 , 2 , 3 , 4 , 5 , 6]
l s t . pop () # returns 6 . l s t i s now [1 , 2 , 3 , 4 , 5]
[1 , 2 , 3] + [4 , 5 , 6] # returns [1 , 2 , 3 , 4 , 5 , 6]

S t r i n g s
s t r i n g = ” hel lo ”
len (s t r i n g) # returns 5
s t r i n g [0] # returns h
s t r i n g [2 : 4] # returns l l
s t r i n g = ” t h i s i s a sentence ”
s t r i n g . s p l i t (” ”)
returns [” t h i s ” , ” i s ” , ”a” , ” sentence ”]

Dic t ionary
{ ’ a ’ : 0 , ’ b ’ : 1 } . keys () # returns [’ a ’ , ’ b ’]
{ ’ a ’ : 0 , ’ b ’ : 1 } . values () # returns [0 , 1]
’ a ’ in { ’ a ’ : 0 , ’ b ’ : 1 } # returns True

Map and Reduce

map(function , l s t)
returns a map object corresponding to the
r e s u l t of c a l l i n g funct ion to each item in l s t
t y p i c a l l y needs to be cast as a l i s t

reduce (function , l s t , s t a r t)
returns a value that i s the combination of a l l
items in l s t . funct ion (accum , cur) w i l l be used to
combine the items together , s t a r t i n g with s tar t ,
and then going through each item in the l i s t .

reduce (function , l s t)
omitt ing s t a r t uses the f i r s t element being
reduced as ’ accum ’ in the above version

regex in python
re . ful lmatch (pattern , s t r i n g)
returns a match object i f s t r i n g i s a
f u l l / exact match to s t r i n g .
returns None otherwise

re . search (pattern , s t r i n g)
returns a match object corresponding to
the f i r s t instance of pattern in s t r i n g .
returns None otherwise

re . f i n d a l l (pattern , s t r i n g)
returns a l l non−overlapping matches
of pattern in s t r i n g as a l i s t

re . f i n d i t e r (pattern , s t r i n g)
returns an i t e r a t o r over the s t r i n g
each i t e r a t i o n gives a match object

match objects
m = re . search (” ([0 −9] +) ([0 −9] +) ” , ” 12 34 ”)
m. groups () # returns (” 12 ” , ” 34 ”)
returns a tuple of a l l th ings that were
captured with parentheses

m. group (n) # m. group (1) = ” 12 ” , m. group (2) = ” 34 ”
returns the s t r i n g captured by the nth
set of parenthesis

7

Regex
* zero or more repetitions of the preceding character or group
+ one or more repetitions of the preceding character or group
? zero or one repetitions of the preceding character or group
. any character
r1 |r2 r1 or r2 (eg. a—b means ’a’ or ’b’)
[abc] match any character in abc

[ˆr1] anything except r1 (eg. [ˆabc] is anything but an ’a’, ’b’, or ’c’)
[r1-r2] range specification (eg. [a-z] means any letter in the ASCII range of a-z)
{n} exactly n repetitions of the preceding character or group
{n,} at least n repetitions of the preceding character or group
{m,n} at least m and at most n repetitions of the preceding character or group
ˆ start of string
$ end of string
(r1) capture the pattern r1 and store it somewhere (match group in Python)
\d any digit, same as [0-9]
\s any space character like \n, \t, \r, \f, or space

NFA to DFA Algorithm (Subset Construction Algorithm)
NFA (input): (Σ,Q , q0, Fn ,σ), DFA (output): (Σ, R , r0, Fd ,σn)

R ← {}
r0 ← ϵ − closure(σ, q0)
while \ an unmarked state r ∈ R do

mark r
for all a ∈ Σ do

E ← move(σ, r , a)
e ← ϵ − closure(σ, E)
if e < R then

R ← R ∪ {e}
end if
σn ← σn ∪ {r , a, e}

end for
end while
Fd ← {r | \s ∈ r with s ∈ Fn }
Structure of Regex

Regex
R → ∅

— σ
— ϵ
— RR
— R |R
— R ∗

8

