
CMSC330 – Organization of Programming Languages
Fall 2022

Final Exam

CMSC330 Course Staff
University of Maryland

Department of Computer Science

December 14th, 2022

• You get 5 points if you do not remove the staple or any sheets
from your exam packet.

• Do not tear out any individual sheets from the exam packet

• Write your name and UID in the header of each page.

• Refrain from bending or folding the exam in any place except
near the staple, this helps us when scanning your exams.

• Read all questions carefully before starting.

• Table of points-per-question is on the back of the packet (if you
want to strategize with your time).

Name:

UID:

1

UID:

1. For each code listing, fill in the blank such that the code would result in the given output:

(a) 3 points The following should print 15
arr = [2, 4, 6, 8, 10]
sum = 0
arr.each ________blank 1_________
puts sum # prints 15

Blank1:

(b) 3 points The following should print {2=>16, 4=>36, 6=>64, 8=>100}

def mycons(x,h)
for i in x

h[i] = ______blank 2________
end
h

end
hsh = mycons([2,4,6,8], Hash.new){|x| x^2}
puts hsh # prints {2=>16, 4=>36, 6=>64, 8=>100}

Blank2:

Page 2

UID:

(c) 3 points The following should print [1, 3, 5]

arr2 = [1, 2, 3, 4, 5, 6]
result = arr2.select ________blank 3_________
puts result # prints [1, 3, 5]

Blank3:

(d) 4 points The following should print ‘‘NY => New York; MD => Maryland; VA => Virginia’’
result_string = “”
hsh = {“NY”: “New York”, “MD”: “Maryland”, “VA”: “Virginia” }
hsh.each ________blank 4_________
puts result_string # prints ‘‘NY => New York; MD => Maryland; VA => Virginia; ’’

Blank4:

Page 3

UID:

Here are the type signatures for some useful OCaml functions:

map : (’a -> ’b) -> ’a list -> ’b list

fold_left : (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a

fold_right : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b

cons: ’a -> ’a list -> ’a list

append: ’a list -> ’a list -> ’a list

2. Typing OCaml Expressions

Write the types of the following OCaml expressions. If the expression doesn’t type check, just write
“type error” with no explanation required.

(a) 2 points let x a b = fun a b -> a :: (a = b)

(b) 3 points fun x a -> fun x b -> x :: [x+1] :: a :: [b]

(c) 3 points fun x a -> (x a) :: a :: ["cmsc330"]

Page 4

UID:

3. Writing instances of OCaml Types

Without any additional type information, write an expression with the following provided types, if it is
not possible write “impossible”. Any pattern matches in your answers must be exhaustive.

(a) 2 points (‘a -> ‘b) -> ‘a -> ‘b -> ‘b list

(b) 2 points int -> int -> bool

(c) 3 points (‘a * ‘b) -> (‘a -> ‘b -> ‘c) -> ‘c -> bool list

Page 5

UID:

4. 10 points Implement the zip function that takes in two lists (list1 and list2) and returns a list of
tuples where the ith tuple in the returned list contains the ith element from list1 and the ith element
from list2. If the lists are not the same length, the resulting list should have the length of the shorter
of the input lists.

zip should have the following type: zip : ’a list -> ’b list -> (’a * ’b) list and its behavior
should match the following examples:

zip [] [] === []
zip [1;2;3] ["a";"b","c"] === [(1,"a"); (2,"b"); (3,"c")]
zip [1;2] ["a";"b";"c"] === [(1,"a"); (2,"b")]

Note: you should not need all this space, but some of you have very big hand-writing. If you’re writing
a lot of code, rethink your solution.

Page 6

UID:

Page Intentionally Left Blank. You can use it for scratch space, but then it wouldn’t be as blank as it
currently is. Your call.

Page 7

UID:

5. Non-deterministic Finite Automata

(a) 8 points Convert the following NFA into a DFA:

Astart

CB F

ED G

H

ϵ

ϵ

9 8

7 6
ϵ

ϵ

1

ϵ

ϵ

Scratch space for Question 5:

Page 8

UID:

Your answer here (There is scratch space on the previous page):

(b) 2 points What is an equivalent Regular Expression for the NFA in Question 5(a)?

Page 9

UID:

6. Consider the following OCaml types and code:

type expr = Int of int
| Var of String
| Add of expr * expr
| Square of expr
| Let of String * Expr * Expr

let rec lookup env x =
match env with
| [] -> failwith "Variable not found in the environment"
| (y,v)::env -> if x = y then v else lookup env x

let extend env var val = (var,val)::env

let rec eval env e =
match e with
| Int i -> i
| Var v -> lookup env v
| Square expr -> let v = eval env e in v * v
| Add (e1,e2) -> let v1 = eval env e1 in

let v2 = eval env e2 in
v1 + v2

| Let (v,def,body) -> let d = eval env def in
let env2 = extend env v d in
eval env2 body

Now consider the following operation semantics for the language we are implementing above:

num
A;n→ n

lookup
A(x) = v

A;x→ v
let

A; e1 → v1 A, x : v1; e2 → v2
A; let x = e1 in e2 → v2

add
A; e1 → v1 A; e2 → v2 v3 is v1 + v2

A; e1 + e2 → v3

(a) 1 point Which constructor from our expr is missing a corresponding rule in the operational se-
mantics?

Page 10

UID:

(b) 4 points Write the missing rule for our operational semantics that is consistent with the behavior
from our eval function above.

(c) 5 points We then add a Print and an If constructor to our expr type, with the following defini-
tions:

...
| Print of expr
| If of expr * expr * expr
...

We add the following lines to our interpreter for Print:
| Print e -> let v = eval env e in print_int v

The intention is to add a conditional expression with the same sort of behavior as OCaml’s if.
Assume that we’ve added booleans in the usual way (like in project 4), and we want the following
program to print out 84, for example:

if false then print 42 else print 84
In order to delegate this task to a colleague, I write the following rules for our Operational Semantics:

if-true
A; e1 → true A; e2 → v2 A; e3 → v3

A; if e1 then e2 else e3 → v2
if-false

A; e1 → false A; e2 → v2 A; e3 → v3

A; if e1 then e2 else e3 → v3

If our colleague implements the rules exactly as written, will we get the behavior (Ocaml-like) that
we want? Explain why:

Page 11

UID:

7. Lambda Calculus

(a) 4 points Consider the following lambda expression:

((λx. (λx. (λx.x (λx.x))))λx.x)x

Provide a valid alpha-renaming of the above Lambda Expression where no variable name is used
more than once:

Page 12

UID:

8. Rust
(a) 3 points Consider the following code:

let a = String::from("cmsc330");
{ let b = a;

{ let c = b;
let d = &c;

}
//HERE

}

At the point in the program marked HERE what variable, if any, ‘owns’ the string created on the
first line:

(b) 5 points Code Surgery
The following code will not compile.
1: fn main() {
2: let s = String::from("Hello");
3: fun(s);
4: println!("{}", s);
5: }
6:
7: fn fun(s: String) {
8: println!("{}", s);
9: }
The intended behavior was for the program to print the string twice, once via fun and once in main.
Replace a maximum of two lines in order to fix this program. Ensure that you specify which line(s)
you are replacing.
Correction 1

Correction 2

Page 13

UID:

General Scratch Space and Useful Information

Page 14

Ruby
Helpful Array Functions:

each {|item| block} → array
each → Enumerator

Calls the given block once for each element in self, passing that element as a parameter.
Returns the array itself.
If no block is given, an Enumerator is returned.

a = ["a", "b", "c"]
a.each {|x| print x, " -- " }
produces:
a -- b -- c --

select {|item| block} → new_array
select → Enumerator

Returns a new array containing all elements of the array for which the given block returns a
true value.
If no block is given, an Enumerator is returned instead.

[1,2,3,4,5].select {|num| num.even? } #=> [2, 4]
a = %w[a b c d e f]
a.select {|v| v =~ /[aeiou]/ } #=> ["a", "e"]

each {| key, value | block } → hash
each_pair {| key, value | block } → hash
each → an_enumerator
each_pair → an_enumerator

Calls block once for each key in the hash, passing the key-value pair as parameters.
If no block is given, an enumerator is returned instead.

h = { "a" => 100, "b" => 200 }
h.each {|key, value| puts "#{key} is #{value}" }

produces:
a is 100
b is 200

Regular Expression Documentation:

Creating a Regex:

/pat/ /hay/ =~ “haystack”

%r{pat} %r{hay} =~ “haystack”

[] range specification (e.g., [a-z] means a
letter in the range a to z)

{m,n} at least m and at most n repetitions
of the preceding

\w letter or digit; same as [0-9A-Za-z] {m,} at least m repetitions of the
preceding

\W neither letter or digit (a|b) a or b

\s space character; same as [\t\n\r\f] (...) grouping; capture everything
enclosed

\S non-space character ^ Start of line

\d digit character; same as [0-9] $ End of line

\D non-digit character [^abc] Any single character except: a, b,
or c

* zero or more repetitions of the preceding [abc] A single character of: a, b, or c

+ one or more repetitions of the preceding [a-z] Any single character in the range
a-z

? at most one repetition of the preceding;
same as {0,1}

a{3} Exactly 3 of a

Matching a Pattern:

/regexp/ =~ string /hay/ =~ “haystack” #=> 0
/needle/.match('haystack') #=> nil

/regexp/.match(string) /y/.match('haystack') #=> #<MatchData "y">
/I(n)ves(ti)ga\2ons/.match("Investigations")

#=> #<MatchData "Investigations" 1:"n" 2:"ti">

case... when...end

case Starts a case statement definition. Take the variable you are going to work with.

when Every condition that can be matched is one when statements.

else If nothing matches then do this. Optional.

Ruby Case & Ranges
case capacity
when 0

"You ran out of gas."
when 1..20

"The tank is almost empty. Quickly, find a gas station!"
when 21..70

"You should be ok for now."
when 71..100

"The tank is almost full."
else

"Error: capacity has an invalid value (#{capacity})"
end

UID:

NFA to DFA Algorithm:
NFA (input): (Σ, Q, q0, Fn, σ), DFA (output): (Σ, R, r0, Fd, σn)

R← {}
r0 ← ϵ− closure(σ, q0)
while ∃ an unmarked state r ∈ R do

mark r
for all a ∈ Σ do

E ← move(σ, r, a)
e← ϵ− closure(σ,E)
if e /∈ R then

R← R ∪ {e}
end if
σn ← σn ∪ {r, a, e}

end for
end while
Fd ← {r|∃s ∈ rwiths ∈ Fn}

Grammar for the Lambda Calculus:
e := v

| e e
| λ v . e

Grammar for Regular Expressions:
r := σ

| ϵ
| rr
| r | r
| r*

Question Points

1 13

2 8

3 7

4 10

5 10

6 10

7 4

8 8

Total: 70

Page 18

