
CMSC 330, Fall 2022

Property-Based Testing

Lecture Review
University of Maryland, College Park
Department of Computer Science

JC+CB

September 29, 2022

Contents

1 Introduction 1

2 Unit Tests 1
2.1 OUnit . 2

3 Property-Based Testing 3
3.1 Properties . 3

4 QCheck 4
4.1 Other Properties . 5

1 Introduction

Testing. It’s important.
There are many ideas and patterns related to testing, many are beyond the

scope of this lecture. Our focus is going to be on how we can generalize unit-
testing. This begins with a quick discussion of what unit-testing is, then we will
introduce property-based testing as a powerful generalization.

2 Unit Tests

Unit tests are powerful, luckily they are also relatively simple to understand!
When working in utop, you may be doing unit testing already. Consider the
following definition of a function to calculate the Fibonacci numbers:

1

let rec fib x =

if x < 2

then 1

else (fib (x-1)) + (fib (x-2))

We may find ourselves running some sample invocations and seeing if the
answer is what we expect. Perhaps we would test the following in utop:

utop # fib 5;;

- : int = 8

If we know what the result should be ahead of time, it might be worthwhile
to check the value explicitly:

utop # fib 5 = 8;;

- : bool = true

Doing that on a few examples is good, and we definitely encourage it! The
idea of Unit-Tests is that we can check these examples programmatically. So in
a separate file we might have a bunch of these equality checks, each one being
‘a unit test’.

2.1 OUnit

Unit testing frameworks (like OUnit, for OCaml) provide functionality around
this simple idea. The core idea is unchanged from above, but the framework
allows for naming of specific tests and ‘nicer’ error reporting. Consider this
small example (note that open is how we import libraries, in this case a library
for testing):

open OUnit2

let rec sum xs =

match xs with

| [] -> 0

| y::ys -> y + sum ys

let tests = "test suite for sum" >::: [

"empty" >:: (fun _ -> assert_equal 0 (sum []));

"singleton" >:: (fun _ -> assert_equal 1 (sum [1]));

"two_elements" >:: (fun _ -> assert_equal 3 (sum [1; 2]));

]

This allows us to programmatically run these tests, and when we change our
implementation of sum, we can run these tests to make sure we haven’t broken
our code. Unit tests are very powerful and consistently gaining wider adoption
in industry. In fact, unit testing is considered a ‘best practice’ in industrial
software engineering today. We aren’t going to make you learn OUnit in this
course, but if you’re interested, you can learn more at https://ocaml.org/p/
ounit2/2.2.3/doc/index.html.

2

https://ocaml.org/p/ounit2/2.2.3/doc/index.html
https://ocaml.org/p/ounit2/2.2.3/doc/index.html

The drawback of Unit Testing

While powerful, unit testing does suffer from a very particular limitation: you
have to think of the things to check. Thinking up examples is difficult, and on
top of that, there’s always the chance that your test is wrong. Because of this,
programmers often write unit tests for the cases that are easy to think about.
As an unfortunate consequence, the edge cases that are hard to think about are
less likely to be written as tests!

Finding the edge-cases

There are a few techniques to improve a test-suite’s ability to take edge cases
into account. One of the more popular technologies is known as code coverage1.
In short, code coverage is about measuring how much of your code actually gets
run/executed when you test it. The idea is that the more of your code that
gets run, the more of the possible edge cases you’ve taken into consideration.
Different languages and testing frameworks provide different ways of measuring
code coverage. While code coverage is a useful metric, it does not solve the
problem, you still have to think of the examples!

Property-based testing seeks to solve the problem of test-case generation by
generalizing unit tests.

3 Property-Based Testing

Unit tests work by testing code on particular input examples. These examples
must be generated by something, usually the programmer who wrote the test, or
some input that caused a crash (a hard-earned example!). As mentioned above,
thinking of examples is difficult, especially for non-obvious edge-cases.

Property-based testing aims to free the programmer from the task of example
generation. It achieves this with the following trade: If you can think of a
property that your code should satisfy, the property-based testing framework will
generate as many examples as you’d like. So our problem shifts from ‘thinking
of examples’ to ‘thinking of properties’.

3.1 Properties

Much of the code we right is written with certain assumptions in mind. Often
these assumptions can be expressed as properties2. A ‘property’ is simply ‘a
thing we expect to be true’ about our code, usually as it relates to some other
code or data structure. Let’s look at some examples of properties:

• reversing a list should not change the number of elements in this list

1The wikipedia article is pretty good for describing code coverage: https://en.wikipedia.
org/wiki/Code_coverage.

2And sometimes they can’t!

3

https://en.wikipedia.org/wiki/Code_coverage
https://en.wikipedia.org/wiki/Code_coverage

• a sorted list should have its minimum element as the first element

• combining two hash tables should not result in a hash table that is larger
than the two independent sizes added together

• adding an element to a set, and then looking up that element, should
succeed

Take a moment and try to think of some properties of code you’ve written
in the past.

4 QCheck

Because OCaml is a functional language, it is unlikely to surprise you that we
are going to write our properties as functions. Consider the following property:
Taking the floor (rounding a float down to an int) of a number should result
in a number that is less than or equal to the original number. Let’s write that
as a function:

(fun f -> floor f <= f)

That’s it, that’s the property.
Now we want to have our computer generate examples for this property.

Each individual example can be seen as a single unit test, so by thinking in
terms of properties we can have the computer generate an arbitrary number of
unit tests. There is an OCaml library call QCheck that will generate examples
for a given property. It looks like this:

let round_down_test = Test.make float (fun f -> floor f <= f);;

Here we’re using the Test.make function, which is provided by the QCheck

library, to generate a bunch of floats to test this property on. We would
then use QCheck2_runner.run_tests to actually run the tests. Putting it all
together in utop looks like the following:

utop # #require "qcheck";;

utop # open QCheck;;

utop # let round_down_test = Test.make float (fun f -> floor f <= f);;

val round_down_test : Test.t = QCheck2.Test.Test <abstr>

utop # QCheck_runner.run_tests [round_down_test];;

==

success (ran 1 tests)

- : int = 0

Let’s put a bug in our implementation to see if this can find it:

4

utop # let round_down_test = Test.make float (fun f -> floor (f +. 0.1) <= f);;

val round_down_test : Test.t = QCheck2.Test.Test <abstr>

utop # QCheck_runner.run_tests [round_down_test];;

random seed: 414488010

--- Failure --

Test anon_test_1 failed (0 shrink steps):

-3.74649808603e-07

==

failure (1 tests failed, 0 tests errored, ran 1 tests)

- : int = 1

This is showing us that on the input of -3.74649808603e-07, our property
did not hold.

4.1 Other Properties

Earlier we had a list of potential properties, take each one and write it as a
property in OCaml. For example, here’s the first one “reversing a list should
not change the number of elements in this list”. As a property it would look
like the following:

(fun xs -> length xs = length (reverse xs))

Having QCheck generate lists for us is very similar to generating floats,
here’s the utop session:

utop # let len_prop = (fun xs -> List.length xs = List.length (rev xs));;

val len_prop : ’a list -> bool = <fun>

utop # let len_test = Test.make (list int) len_prop;;

val len_test : Test.t = QCheck2.Test.Test <abstr>

utop # QCheck_runner.run_tests [len_test];;

==

success (ran 1 tests)

- : int = 0

Looks like OCaml’s implementation of ‘rev‘ does the right thing (at least
with regard to this property).

Exercise: Write an implementation of ‘reverse‘ that would not satisfy this
property (perhaps it drops an element), and see what QCheck reports.

Exercise: Write the other properties and test them.

5

5 Limitations of Property-Based Testing

Like nearly all technical solutions, property-based testing is not a panacea. Not
all code can be described via properties. Stateful code (i.e. code that uses
mutable variables) and code that executes side-effects (e.g. reading/writing
from/to files) is particularly difficult to describe as properties.

The reality is that property-based testing and unit testing both have their
place. Where code can be described via properties, property-based testing pro-
vides an arbitrary number of unit tests ‘for free’. For code where property-based
testing is not realistic, unit tests are the right approach.

6

	Introduction
	Unit Tests
	OUnit

	Property-Based Testing
	Properties

	QCheck
	Other Properties

