
Appendix A

OCaml Walkthrough

If it’s called Ocaml, why don’t
they use Camel Case?

Anonymous Student

This document is made so you can follow through examples and see some remarks. I would suggest
you take the examples here, modify and play around with them yourself. This was made primarily because
classes have been canceled due to weather. Why not a video you may ask? If changes need to be made, it
would be easier to do instead of making a whole new video every time. Also, working with code examples,
written format is probably better. Also this forces you to at least copy and paste things to play around with
things as opposed to watching me code.

A.1 Getting Started
There are two ways you can go about this. You can either use utop directly, or (what I would suggest as
things get more complicated), writing in a file that you then can import into utop. If you wish to use the
file method, place your code in a file, say "myfile.ml". Then in utop you can type #use "myfile.ml" (don’t
forget the # symbol) For example:

The file myfile.ml:

(*  myfile.ml  *)
42

In utop:

utop  #  #use  "myfile.ml";;
-  :  int  =  42

You must reload the file using the #use directive every time you modify the file.

Important Note: Because whitespace and newlines do not affect OCaml execution, you must end any
command in utop with ;;.

A.2 Expressions, values and Basic Data Types
Let’s start with understanding the output o futop. We can use the example from above: 42. When we type
this into utop (adding ;;) or into a file which we load form utop, we should get the following output:

-  :  int  =  42

As you probably deduced, the output tells the value we entered and the data type it concluded the value to
be. So we can try a few values:

1



2 APPENDIX A. OCAML WALKTHROUGH

true
-  :  bool  =  true
2.0
-  :  float  =  2.
"hello"
-  :  string  =  "hello"
’a’
-  :  char  =  ’a’

This seems right, but a little misleading. We stated that in OCaml, things are expressions, and expressions
evaluate to expressions. So what happens if we put in an expression that is not a value? Let’s try 42 + 42:

42  +  42
-  :  int  =  84

In this case, we still get the type OCaml concluded this expression is, and we get the value the expression
evaluated to. Hence why we say values are expressions, or rather expressions that evaluate to themselves.1.
We can try a few more expressions:

true  ||  false
-  :  bool  =  true
"hello"  ̂  "  world"
-  :  string  =  "hello  world"
1.0  +  2.6
Error:  the  constant  1.0  has  type  float  but  an  expression  was  expected  of  type  int

A.3 Typing of Functions
Let’s take another look at the error we got in the last section:

1.0  +  2.6
Error:  the  constant  1.0  has  type  float  but  an  expression  was  expected  of  type  int

We know that math that functions are things that take in input and return output. We know from C
and Java that we typically have to know the input and output type. Here is a Java example,

1 int myfunc (char x, double y){ // returns int , input of char and float
2 return (int)y + (int)x;
3 }

This function has inputs of char and double and returns an int.Had we tried to use values of not this type,
we would get a compile error. The same is true with OCaml. All this means is that built in functions (and
user defined functions) all have data types that must be adhered to. So let’s go back to the error we got:

1.0  +  2.6
Error:  the  constant  1.0  has  type  float  but  an  expression  was  expected  of  type  int

For some reason, when using the + function, OCaml is expecting the 1.0 to be an int, not a float. This is
because in OCaml, unlike other languages, you cannot use + on non-ints. Consider the following errors:

1.0  +  2
Error:  the  constant  1.0  has  type  float  but  an  expression  was  expected  of  type  int
1  +  2.3
Error:  the  constant  2.3  has  type  float  but  an  expression  was  expected  of  type  int
2  +  3
-  :  int  =  5

1From an ontological viewpoint they are different. The value 42 is different from the expression 42, and we would say the
latter evaluates to the former. But from a lexicographical view we use them interchangeably.





A.4. LET BINDINGS 3

We can also verify this by checking the type of the function directly:

(+)
-  :  int  ->  int  ->  int  =  <fun>

This tells us the type and the value however there is some new things to consider. This is a function, which
is denoted by <fun>. All functions show this, because there is no real other way to denote the value the
function is. As for the type, a function’s type is defined by the input and the output and given in what
looks like a list like format. The last item of the list will always be the return type, while everything else is
types of the input(s) in the order they are defined. So in this example, the + function has two inputs, both
ints, and one output, which is an int. If we wished to add floats together, we would have to use a different
function. This function is +..

1.1  +.  2.04
-  :  float  =  3.14
(+.)
-  :  float  ->  float  ->  float  =  <fun>

We can see we also get an error when we don’t use floats:

1  +.  2.3
Error:  The  constant  1  has  type  int  but  an  expression  was  expected  of  type  float
Hint:  Did  you  mean  1.?
1.1  +.  2
Error:  The  constant  2  has  type  int  but  an  expression  was  expected  of  type  float
Hint:  Did  you  mean  2.?

We can also test the previous used example of string concatenation:

(^)
-  :  string  ->  string  ->  string  =  <fun>

A.4 Let Bindings
Now if we wanted to make our own functions, we can use a let binding to do so.

let  myfunc  x  y  =  int_of_float  y  +  int_of_char  x
val  myfunc  :  char  ->  float  ->  int  =  <fun>

Now we have a variable myfunc which OCaml has denoted with val and we have the type: char -> float -> int.
We now know that this function returns int (the last part of the list), and the first input is char and the
second input is float. We can make a different function with a different type and different number of inputs:

let  myotherfunc  z  =  string_of_float  (z  *.  3.4)
val  myotherfunc  :  float  ->  string  =  <fun>

What happens if we make a function with no input?

let  zeroinput  =  4  +  5
val  zeroinput  :  int  =  9

In this case, we are not actually defining a function. We are defining a variable. When defining a function
verses defining a variable look similar however they are different in terms of when things are evaluated.
Everything in OCaml is an expression which means it evaluates to a value. However, there is a bit of wiggle
room as to when this evaluation occurs. Let’s consider the print_string function which we saw in the hello
world example in the notes.

print_string  "hello\n"
hello
-  :  unit  =  ()



4 APPENDIX A. OCAML WALKTHROUGH

Ignore Unit for now, we will come back to it. But we can see that when we evaluate this print_string
expression, hello is printed out. So let’s bind this expression to a variable, and use this expression inside a
function.

let  myvar  =  print_sting  "hello\n"
hello
val  myvar  :  unit  =  ()
let  myprintfunc  _x  =  print_string  "hello\n"
val  myprintfunc  :  ’a  ->  unit  =  <fun>

First notice that "hello" is only printed when we bind to a variable, not the function. This makes sense
because we don’t actually want to evaluate or run the body of a function until the function is called. But
when we are making a variable, we want to evaluate what the variable should be bound to.

myprintfunc  2
hello
-  :  unit  ()
myprintfunc  true
hello
-  :  unit  ()
myvar
-  :  unit  ()

Notice that print_string is re-evaluated each time the function is called. However it is not re-evaluated
when the variable is used. This is because print_string is evaluated and the return value of the print_string
function is bound to the variable. Since the return type is bound to the variable, there is no reason to re-
calculate the value when we use the variable. Before we talk more about that I want to address the ’a data
type.

A.5 Type Inference
The ’a data type represents a polymorphic type. It is typically used when OCaml cannot determine the
type of the input used for a function. Notice that in all the examples, we never had to say what was an int,
what was a float, etc. This is because OCaml infers the type of variables and values. How OCaml does this
is a future lecture, but let’s consider the following:

let  mytypedfunc  x  y  =  x  +  y
val  mytypedfunc  :  int  ->  int  ->  int

OCaml determines that for this to compile, because you are using the known typed function of +, both x
and y must be ints. If we consider the other function

let  myprintfunc  _x  =  print_string  "hello"
val  myprintfunc  :  ’a  ->  unit  =  <fun>

OCaml does not have enough information about what x must be (because we don’t use it).

A.6 Referential Transparency and Side Effects
Now that we know about type inference, we can go back to talk about the unit type and why the when
of evaluation is different in our previous examples. One aspect of functional programming is that functions
should be, well, functions. We know that a function is something that takes in input and return output.
But the other quality a function has is determinism. A function cannot have 2 different outputs for the
same input.2. This is really helpful when writing proofs, and substituting in mathematics. Imagine if we say

2The square root function is different from the square root relation for this very reason



A.7. EXPRESSIONS CONTINUED 5

something like f(3) + 5. If we know f(3) = 4, then it should follow that f(3) + 5 = 4 + 5 = 0. If we
said otherwise, then something went very very wrong. This property of being able to replace functions with
their result and not have any change in behavior is called referential transparency.

So if we know that myvar = print_string "hello\n", and that print_string "hello\n" = (), then
it should follow that myvar = (). In this case, there should be no reason to recalculate print_string "hello\n"
everytime we want to use myvar.

This is different from f(x) + 5. In this case, we cannot say what this value is until we know what x
is. So because myprintfunc x is dependent on x, we cannot know what should be calcualted until we know
what x is. Thus, we cannot evaluate the body of a function (and consequently the print_string function
in the body) until the function is actually called with an input.

If we wanted to have a function that has no input, or no output, (like void or null in other languages),
OCaml uses what is called unit. unit is the type name, whereas the lexicographical representation is ().
The print_string function then, returns void but has what we call a side effect, of printing it’s input to
stdout. Typically to denote side effects, we use unit.

A.7 Expressions Continued
So now that we know that functions have a type that must be followed, that OCaml uses type inference,
and that functions can only have one output per input, we can see how this works with more complicated
expressions. However before we begin, we need to explicitly talk about expressions, types and how they
combine.

As we have been seeing, expressions have types, and are evaluated to values which also have types. We
also know that functions expect particular inputs and return a particular type. When thinking about how
to combine or write larger OCaml expressions, we can consider the following:

1  +  2  +  3
-  :  int  =  6

Let’s break this down to smaller parts so we can see how all of what we learned plays a part.

First, we know the + function expects two inputs, both ints, and returns an int type. Second, we know that
expressions evaluate to values which have a type. So let’s consider: 1 + 2 + 3 is the same as (1 + 2) + 3.
We know that the expression 1 + 2 consists of the + function that takes in two inputs and returns an output.
We also know that 1 and 2 are values which are ints and we can say that 1 + 2 = 3 (and 3 is an int) If
1 + 2 = 3 then 1 + 2 + 3 = (1 + 2) + 3 = 3 + 3. We now have a new expression of 3 + 3 which also
uses the two input function of + and returns an int. Knowing basic maths says that 3 + 3 = 6. So the
entire expression 1 + 2 + 3 = 6 which is an int.

We can use this to calculate the evaluated value of the expression 1 + 2 + 3 + 4. 1 + 2 + 3 + 4
is the same as (1 + 2 + 3) + 4 and we just calcualted that 1 + 2 + 3 = 6 so using subsitution, we get
6 + 4 which we can then evaluate to 10. To be very explicit, we can say the following:

(e1:int  +  e2:int):int

This says that we can add any two expressions e1 and e2 together and get an expression of type int as long
as e1 and e2 are ints themselves. So coupling this with the base case of

v:int

we can now recursively represent any expression that is a combination of +. If we learn more expressions
and types, we can make larger expressions.

n:int
(e1:int  +  e2:int):int



6 APPENDIX A. OCAML WALKTHROUGH

(e1:int  -  e2:int):int
(e1:int  *  e2:int):int
(e1:int  /  e2:int):int

Knowing the types of these functions means we can write longer expressions:

3  *  4
-  :  int  =  12
6  /  3
-  :  int  =  2
1  +  12
-  :  int  =  13
13  -  2
-  :  int  =  11
(*  if  above  is  true,  then  below  follows  *)
1  +  3  *  4  -  6  /  3
-  :  int  =  11

A.7.1 More functions
So let’s expand our repitoir with more functions and expressions. Let’s start with comparison:

(e1:’a  =  e2:’a):  bool
(e1:’a  <>  e2:’a):  bool
(e1:’a  <=  e2:’a):  bool
(e1:’a  <  e2:’a):  bool
(e1:’a  >=  e2:’a):  bool
(e1:’a  >  e2:’a):  bool

The comparison functions (=,<>,<=,<,>=,>) take in two inputs and return a bool. The two inputs are
polymorphic, but they must be the same type. See below:

2  =  3
-  :  bool  =  false
"hello"  <>  "world
-  :  bool  =  true
true  <=  false
-  :  bool  =  false
3.14  >  2
Error:  The  constant  2.  has  type  int  but  an  expression  was  expected  of  type  float
Hint:  Did  you  mean  2.?

When two inputs share the same polymorphic identifier (in this case ’a), they must be the same type, but
what that type is in particular doesn’t really matter. Let’s see this in action:

let  difftypes  _x  _y  =  5
val  difftypes  :  ’a  ->  ’b  ->  int
let  sametypes  x  y  =  x  <>  y
val  sametypes  :  ’a  ->  ’a  ->  bool
let  diffandsametypes  a  b  c  d  =  (a  =  c)  &&  (b  <>  d)
val  diffandsametypes  :  ’a  ->  ’b  ->  ’a  ->  ’b  ->  bool

The first one has two different polymorphic types because OCaml does not have enough information to
determine what types x and y are. The second one has the same polymorphic type because OCaml determines
you are comparing the two inputs and you can only compare inputs of the same type. But what the exact
types are is still unknown. The last example knows that the first and third input have the be the same because
we are comparing them, and the second and fourth inputs must also be the same because we are comparing
them. But there is nothing saying that the first and second inputs have to be the same. Additionally, we
don’t know the particular types of any of the inputs. We can change that with a few new examples:



A.7. EXPRESSIONS CONTINUED 7

let  knowntype  x  y  =  x  <=  (4  -  y)
val  knowntype  :  int  ->  int  ->  bool
let  diffknown  a  b  c  d  =  (a  ̂  "this"  <  c)  ||  (b  =  d)
val  diffknown  :  string  ->  ’a  ->  string  ->  ’a  ->  bool

A.7.2 If Expressions
The if expression is a common expression that you will need. We can take a look at it’s breakdown here:

(if  e1:bool  then  e2:’a  else  e3:’a):’a

This says there are three expressions (e1,e2, and e3) and three keywords (if, then, and else). The first
expresssion must be a bool expression, while the other two expressions must be the same type, though what
particular type is not enforced. See the following:

if  true  then  1  else  2
-  :  int  =  1
if  false  then  1  else  2
-  :  int  =  2
if  true  then  "hello"  else  "world"
-  :  string  =  "hello"
if  false  then  false  else  true
-  :  bool  =  true
if  0  then  1  else  2
Error:  The  constant  0  has  type  int  but  an  expression  was  expected  of  type
       bool  because  it  is  in  the  condition  of  an  if-expression

if  true  then  1  else  false
Error:  The  constructor  false  has  type  bool  but  an  expression  was  expected
       of  type  int

So Ocaml will error if the guard (e1) is not a bool, and error if the true branch (e2) and the false branch
(e3) are not the same type. We can also see that when the expression is correctly typed, the expression has
the same type of its branches and evaluates to the value of the true branch or false branch depending on the
guard.

This last part is important because if the if expression is an expression that evaluates to a value and has
a type, we can use it wherever we expect an expression of a particular type. For example, the guard must
be a bool expression and we saw that if false then false else true is an expression that evaluates to
true and has type bool. Which means we can nest it.

if  false  then  false  else  true
-  :  bool  =  true
if  (if  false  then  false  else  true)  then  1  else  2
-  :  int  =  1

This also applies for the branches as long as the two branches are the same type as well.

if  (if  false  then  false  else  true)  then  (if  false  then  1  else  2)  else  3
-  :  int  =  2

Now because an if expression has the guard between the if and then keywords, the true branch between
the then and else keywords, and the false branch after the else keyword, we don’t need the parenthesis.
White space and newlines don’t affect the evaluation in OCaml so we can see the following:

if  if  true  then  false  else  true  then  if  true  &&  false  then  "hello"  else  "world"  else
   if  3  >  4  then  "a’  else  "b"

-  :  string  =  "b"



8 APPENDIX A. OCAML WALKTHROUGH

Keep in mind that since the if expression is an expression that evaluates to a value and has a type, we can
combine it with any other expression where an expression is expected as long as we keep the types correct:

let  squarebutkeepsign  x  =  x  *  x  *  (if  x  <  0  then  -1  else  1)
val  squarebutkeepsign  :  int  ->  int
squarebutkeepsign  5
-  :  int  =  25
squarebutkeepsign  (-5)
-  :  int  =  -25

A.8 Let Expressions
So far we only talked about let bindings but we can use a let expression which limits the scope of the let
binding. When we used the let binding before, we could use the binding anywhere after the binding occurred.
However, we may only need the binding to exist for short time or just need to it exist for the purpose of
some other nested expression. A let binding takes the form of

(let  var  =  e1:’a  in  e2:’b):’b

Let expressions are expressions that evaluate to values and have type so like the if expression and the
functions we talked about, we can use them wherever we expect an expression as long as the type is correct.
It is important to note that with let expressions (and bindings) that bindings are immutable and when using
a variable with the same name as another, you are shadowing it, not updating a binding.

let  x  =  5
val  x  :  int  =  5
x
-  :  int  =  5
let  x  =  4  in  x
-  :  int  =  4
x
-  :  int  =  5

As you can see, the binding of a variable in let binding only exists in the scope of the expression following
the in keyword. After the end of the expression, the binding is lost. It is also important to note that during
shadowing, if you use a shadowed variable, it will use the closest binding. Consider the following:

let  x  =  6  in  let  x  =  x  +  4  in  x
-  :  int  =  10
let  x  =  6  in  let  x  =  let  x  =  5  in  x  +  3  in  x
Warning  26  [unused-var]:  unused  variable  x.

-  :  int  =  8

In the last case, we can add parenthesis to see the scope of each x binding and why we get a warning of
unused variable x.

let  x  =  6  in  (let  x  =  (let  x  =  5  in  x  +  3)  in  x)
(*                     |______x  =  5_______|
             |__________x  =  8  _________________|

or  if  we  gave  each  x  a  name  it  would  be  the  same  as  *)
let  x1  =  6  in  (let  x2  =  let  x3  =  5  in  x3  +  3)  in  x2)

In the last case, we can see that we have an unused variable x1 which is what the warning is referring to.



A.9. COMPOUND DATA TYPES I 9

A.9 Compound Data Types I
We saw some basic data types like bool, float, int, char and string. The next thing to talk about is compound
data types, or data types that are composed of other data types. The two basic compund data types in
OCaml are lists and tuples.

A.9.1 Tuples
A tuple is a collection of values which are packaged together as a single data type. This can be helpful in
functions that may need to return 2 values (for example a folding function, but that is a future chapter).
Here are some examples of a tuple which has two values:

1,2
-  :  int  *  int  =  (1,2)
"hello",3
-  :  string  *  int  =  ("hello",3)
2.1  +.  1.04,  if  true  then  false  else  true
-  :  float  *  bool  =  (3.14,  false)

Some things to point out, a tuple is an expression which evaluates to a value and has type. The tuple is
seperated with comma(s) and the type is denoted with the star symbol (*). It is important to note the
length of the tuple and the order is important in determining the type. Consider:

if  true  then  (1,true)  else  (true,2)
Error:  The  constructor  true  has  type  bool
       but  an  expression  was  expected  of  type  int

if  true  then  (1,2)  else  (1,2,3)
Error:  This  expression  has  type  ’a  *  ’b  *  ’c
       but  an  expression  was  expected  of  type  int  *  int

Because the if expression requires that both branches have the same type, we can see these are not the same
type. But if we get the type correct, we can use a tuple like any other expression that evaluates to a value
and has a type.

(true,1,"hello")  <  if  true  then  (false,2,"a")  else  (true,6,"b");;
-  :  bool  =  false

It is important to note the "level" the tuple exists at. We can nest tuples with parenthesis but that makes
them a different data type:

(true,false)
-  :  bool  *  bool  =  (true,false)
1,(true,false)
-  :  int  *  (bool  *  bool)  =  (1,(true,false))
(1,2,3),("hello",false,3.4)
-  :  (int  *  int  *  int)  *  (string  *  bool  *  float)  =  ((1,  2,  3),  ("hello",  false,  3.4))

(1,2)  =  ((1,2),3)
Error:  This  expression  has  type  ’a  *  ’b  but  an  expression  was  expected  of  type  int

A.9.2 Lists
Lists are like tuples in the sense they are are also collections of other data types, but unlike tuples, the
length of a list does not impact the type of the list, and lists must be homogeneous. That is, every element
in a list must be the same type. Lists are wrapped in square backets [] and elements are separated with
semicolons(;), not commas.



10 APPENDIX A. OCAML WALKTHROUGH

[1]
-  :  int  list  =  [1]
[1;2;3]
-  :  int  list  =  [1;  2;  3]
[true;false]
-  :  bool  list  =  [true;  false]
[1,true,3]
-  :  (int  *  bool  *  int)  list  =  [(1,  true,  3)]

The empty list is a list that has an unknown data type associated with it:

[]
-  :  ’a  list  =  []

Lists are expressions that evaluate to values and have types, and also defined as such

[1  +  2;3  *  4;  5  /  2]
-  :  int  list  =  [3;  12;  2]
[1.2  *.  3.4;  4.0  -.  3.;  if  true  then  5.3  else  7.4]
-  :  float  list  =  [4.08;  1.;  5.3]
if  [1;2]  >  [5]  then  ["a";"b";"c"]  else  ["d";"e"]
-  :  string  list  =  ["d";  "e"]

There are two main list functions cons and append. The cons opperator will cons (or add) a new element
to the front of a list. Or rather, because lists are immutable, it will return a list with the new element in
the front. Because lists in OCaml are internally represented as linked lists, it’s just adding a pointer rather
than deep copying the entire list so it’s actually a very fast operation.

let  list1  =  [3]  in
let  list2  =  2::list1  in
let  list3  =  1::list2  in
list3  =  1::2::3::[]  &&  list2  =  2::[3]
-  :  bool  =  true

To be more explicit, the cons operator looks like

(e1:  ’a  ::  e2:  ’a  list):  ’a  list

Based off its type, we can see that cons adds an eleement to a list, it does not combine lists togeher. That
does not mean you cannot use it with lists, you just have to be aware of what the type of lists you are playing
around with are:

[[1;2;3];[4;5];[6;7;8;9]]
-  :  int  list  list  =  [[1;  2;  3];  [4;  5];  [6;  7;  8;  9]]
[-2;-1;0]
-  :  int  list  =  [-2;  -1;  0]

[-2;-1;0]  ::  [[1;2;3];[4;5];[6;7;8;9]]
-  :  int  list  list  =  [[-2;  -1;  0];  [1;  2;  3];  [4;  5];  [6;  7;  8;  9]]

This is different from the append function which does combine two lists.

(@)
-  :  ’a  list  ->  ’a  list  ->  ’a  list  =  <fun>

[1;2;3]  @  [4;5]
-  :  int  list  =  [1;  2;  3;  4;  5]


	OCaml Walkthrough
	Getting Started
	Expressions, values and Basic Data Types
	Typing of Functions
	Let Bindings
	Type Inference
	Referential Transparency and Side Effects
	Expressions Continued
	More functions
	If Expressions

	Let Expressions
	Compound Data Types I
	Tuples
	Lists



